

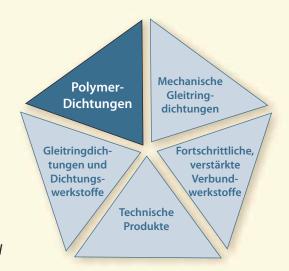
POLYMER-DICHTUNGEN

TECHNISCHE POLYMER-LÖSUNGEN FÜR HYDRAULIK-, PNEUMATIK-UND ROTATIONSMASCHINEN

Inhaltsverzeichnis

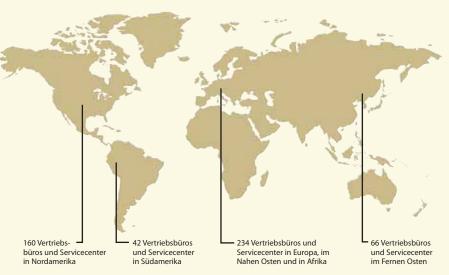
ÜBERBLICK ÜBER CHESTERTON

Finführung	
Einführung Anwendung dieses Kataloges	06
Produktrichtlinien	
Kataloglegende	
LIVERALILIK LINE PNEUMATIKEKITURGEN	ADCCUMUTT
HYDRAULIK- UND PNEUMATIKDICHTUNGEN	ABSCHNIIII
Abstreifer	1.4
Standard Eingepresst	
	13
Stangendichtungen	16
Nutringe Dachmanschetten	
Kompressionsdichtungen	
Flansch- und statische Dichtungen	
Kolbendichtungen	
Nutringe	16
Dachmanschetten	
Kompressionsdichtungen	
Topfmanschette	
Flansch- und statische Dichtungen	
Zusatzvorrichtungen	
Anti-Extrusionsringe	28
Lagerbänder	29
Führungsringe	30
ROTIERENDE DICHTUNGEN UND	
FEDERVORGESPANNTE DICHTUNGEN	ABSCHNITT II
Rotierende Dichtungen	
Lager- und Getriebeschutz	36
Viskose Flüssigkeiten und Pulver	
Drosselbuchsen	39
Federvorgespannte Dichtungen	
reactivorgespannice Dictioningen	
Mäanderfedern der Serie 100	40
Mäanderfedern der Serie 100Elliptische Schraubenfedern der Serie 200	
Elliptische Schraubenfedern der Serie 200	41
Elliptische Schraubenfedern der Serie 200Stützwendelfedern der Serie 300	41 42
Elliptische Schraubenfedern der Serie 200	41 42 43
Elliptische Schraubenfedern der Serie 200Stützwendelfedern der Serie 300Rotierende Dichtungen der Serie 400	41 42 43
Elliptische Schraubenfedern der Serie 200 Stützwendelfedern der Serie 300 Rotierende Dichtungen der Serie 400 V-Profil-Dachmanschetten der Serie 500	41 42 43 44
Elliptische Schraubenfedern der Serie 200	41 42 43 44
Elliptische Schraubenfedern der Serie 200	


CHESTERTON®

Wertschöpfung für die Industrie seit 1884

A.W. Chesterton Company ist ein führender internationaler Hersteller und Anbieter von fünf distinktiven Produktlinien. Jede Produktinie bietet wertschöpfende Lösungen für den Industriebedarf.


Seit 1884 arbeiten wir eng mit unseren Kunden zusammen. Wir bieten ihnen Lösungen, mit denen sie zuverlässiger, effizienter und wirtschaftlicher arbeiten können.

A.W. Chesterton Company ist zertifiziert nach ISO 9001/14001 und MRP II Klasse-A.

Globale Lösungen

Chesterton bietet kosteneffiziente Lösungen auf der gesamten Welt, bei denen indem Hochleistungswerkstoffe und -konstruktionen zur Lösung der schwierigsten Dichtungsanforderungen eingesetzt werden. Die dokumentierten Erfolge sind begleitet von weltweiter Anerkennung.

Lokaler Kundendienst

Die Expertise von Ihrer lokalen Chesterton-Spezialisten und die Unterstützung durch unser technisches Personal ermöglicht Ihnen die Betriebskosten beachtlich zu verringern, die Zuverlässigkeit zu verbessern und jahrelangen problemlosen Einsatz zu erhalten.

TECHNISCHE POLYMER-LÖSUNGEN

Engagement für Qualität und Zuverlässigkeit

Die Engineered Polymer Solutions Group von Chesterton ist ein weltweiter Hersteller und Anbieter von hochwertigsten Polymerdichtungen. Wir kombinieren unsere technische Erfahrung mit modernsten Werkstofftechnologien, um industrieführende Lösungen anzubieten.

- Hydraulik- undPneumatikdichtungen
- Rotierende Dichtungen
- Federvorgespannte Dichtungen
- Kundenspezifische Dichtungen
- Service-Programme

Werkstoffe und Innovation

Wir nutzen alle modernsten Polymertechnologien, um einen breiten Bereich an industriellen Anwendungen zu unterstützen.

Lösungen und Service

Unsere Vertriebsgesellschaften und Spezialisten arbeiten eng mit Kunden zusammen, um Ihnen den besten Service der Branche zu liefern.

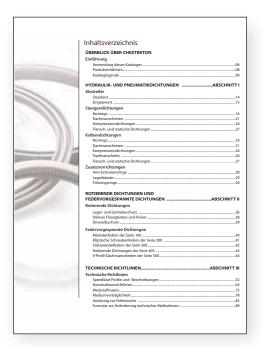
Designs und Expertise

Unsere Ingenieure verlassen sich bei der Konzipierung wertschöpfender Produkte auf langjährige Erfahrung und konzentrieren sich auf die laufende Verbesserung der Anlagenleistungen.

Weitere Informationen über Chesterton und seine Produkte finden Sie auf unserer Website www.chesterton.com

ANWENDUNG DIESES KATALOGS

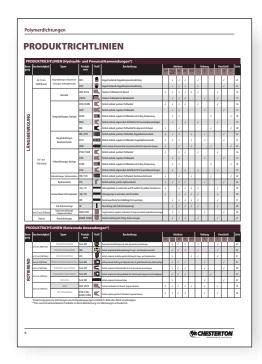
EINSATZ


Im Katalog können Produkte auf zwei Arten aufgesucht werden:

- Mit Hilfe des Inhaltsverzeichnisses
- Mit Hilfe der **Produktrichtlinientabelle**

Inhaltsverzeichnis

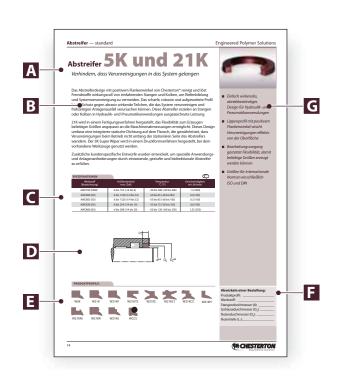
Im Inhaltsverzeichnis können die angebotenen Produkte rasch nach Produkttyp aufgesucht werden.


- **Abschnitt I** Hydraulik- und Pneumatikdichtungen Das umfasst Abstreifer, Stangendichtungen, Kolbendichtungen und Zusatzvorrichtungen.
- **Abschnitt II** Rotierende Dichtungen und federvorgespannte Dichtungen Das umfasst Lippendichtungen, Drosselbuchsen und federvorgespannte Dichtungen.
- **Abschnitt III** Technische Richtlinien Das umfasst Profile und Beschreibungen, Werkstoffangaben, Richtlinien für Mediumsverträglichkeit und Einbaurichtlinien sowie eine Fehlersuchanleitung.

Produktrichtlinientabelle

Mit Hilfe der Produktrichtlinientabelle kann ein geeignetes Produkt für Ihre Anwendung ausfindig gemacht werden. Die Produktmatrix wurde auf Grundlage der Einsatzgeschwindigkeit ausgearbeitet.

- Bestätigung der Einsatzgeschwindigkeit
- Identifizierung des Produktangebots
- Verweis auf die entsprechende Seite für Detailangaben



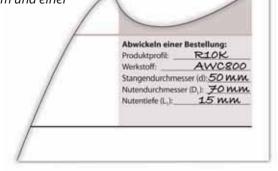
PRODUKTABSCHNITT

Im Produktabschnitt werden alle Produkte nach Typ aufgelistet. Jedes Produkt-Datenblatt enthält folgende Informationen:

- A Produktbezeichnung und -typ
- **B** Produktbeschreibung
- C Technische Daten
- D Anlagenzeichnung
- **E** Profilfamilie
- F Abwickeln einer Bestellung
- **G** Merkmale und Leistungen

ABWICKELN EINER BESTELLUNG

Zum Abwickeln einer Bestellung sind folgende Informationen erforderlich:


- Produktprofil
- Produktwerkstoff
- Anlagenabmessungen

Beispiel:

Um eine Bestellung für eine Hydraulikstangendichtung mit 50 mm Stangendurchmesser, einem Bohrungsdurchmesser von 70 mm und einer Einbauraumtiefe von 15 mm zu bestellen, müssen folgende Informationen angegeben werden.

Abwickeln einer Bestellung: Stangendichtung

Produktprofil	R10K
Werkstoff (AWC-Bezeichnung)	AWC800
Stangendurchmesser (d)	50 mm
Bohrungsdurchmesser (D_1)	70 mm
Nutentiefe (L)	15 mm

PRODUKTRICHTLINIEN

PRO	DUKTRICH	ΓLINIEN (Hydrauli	k- und Pr	eum	atikanwendungen*)												
	Geschwindigkeit	Typen	Produkt- serie	Profil	Beschreibung	Attribute				Reibung		í—	Vei	rschleiſ		Seite	
gung			serie			Form	**masch. bearb.	hyd.	pne.	Geteilt	L	М	Н	L	М	Н	
	bis 15 m/s	Stangendichtungen, Kompressions-	RCCS		Doppelt wirkende Doppelkomponentendichtung		√	√	√		√				√		25
	(3000 ft/min)	dichtungen, Gleitringdichtungen	PCCS		Doppelt wirkende Doppelkomponentendichtung		√	√	√		√				√		25
			W5K, W21K		Positiver Profilwinkel mit Flansch	√	√	√	√	√	√			√			14
		Abstreifer	CW21K		Positiver Profilwinkel mit Metallmantel		√	√	√			√		√			15
			R10K, R22KN	K	Einfach wirkend, positiver Profilwinkel	√	√	√	√		√			√			16
			R22K	K	Einfach wirkend, negativer Profilwinkel		√	√				√			√		17
9		Stangendichtungen, Nutringe	R22KE		Einfach wirkend, negativer Profilwinkel mit O-Ring-Vorspannung		√	$\sqrt{}$					√			√	18
LÄNGSBEWEGUNG			R23K	K	Einfach wirkend, abgerundete Dichtfläche für Pneumatikanwendungen		√		√		√			√			19
WE			R6K	K	Einfach wirkend, positiver Profilwinkel für abgenutzte Anlagen	√		$\sqrt{}$					√			√	20
BE		Stangendichtungen, Dachmanschetten R8K, R27K R11K R600 P10K, P22K	R8K, R27K		Einfach wirkend, positiver Profilwinkel, Doppeldachmanschette	√	√	√		√		√			√		22
<u>GS</u>			R11K		Einfach wirkend, negativer Profilwinkel, Doppeldachmanschette	√	√	$\sqrt{}$		√		√			√		21
Ä			R600	444	Einfach wirkend, Dachmanschette mit positivem Winkel für abgenutzte Anlagen	√		√		√			√			√	23
-			P10K, P22KN		Einfach wirkend, positiver Profilwinkel	√		$\sqrt{}$	√		√			√			16
	bis 1 m/s	William P. Leavison M. Charles	P22K		Einfach wirkend, negativer Profilwinkel		√	√				√			√		17
	(185 ft/min)	Kolbendichtungen, Nutringe	P22KE		Einfach wirkend, negativer Profilwinkel mit O-Ring-Vorspannung		√	$\sqrt{}$					√			√	18
			P23K	K	Einfach wirkend, abgerundete Dichtfläche für Pneumatikanwendungen		√		√		√			√			19
		Kolbendichtungen, Dachmanschetten	P8K, P27K		Einfach wirkend, positiver Profilwinkel, Dachmanschettensatz	√		√		√			√			√	22
		Topfmanschette	P7K		Einfach wirkend, positive Topfmanschette	√	√	√	√			√			√		26
			16K, 17K		Führungsbänder in metrischen und US-Größen für größere Durchmesser	√		$\sqrt{}$	√	\checkmark	√			√			29
		Austauschbare Führungsbänder	18K, 19K		Führungsringe in metrischen und US-Größen	√		√	√	√	√			√			30
			WR		Kundenspezifische Verschleißringe für Lagerträger		√	√	√	√	√			√			31
		Anti-Extrusionsringe	9K		Reserveringe oder Anti-Extrusionsringe		√	√	√	√	√			√			28
	bis 0,25 m/s (50 ft/min)	Kompressionsdichtungen (Stangen und Kolben)	R20K, P20K		Doppelt wirkend, negativer Profilwinkel, für langsam laufende Hydraulikanwendungen		√	√				√			√		24
	Statisch	Flanschdichtungen	R20KDR, P20KDR	U	Statische Dichtung für O-Ring-Verbesserungen		√	√	√		√			√			27

PRC	PRODUKTRICHTLINIEN (Rotierende Anwendungen*)																
	Geschwindigkeit	Typen	Produkt- serie	Profil	Beschreibung		At	tribute			R	eibun	g	Vei	rschleiß	3	Seite
gung			serie			Form	**masch. bearb.	hyd.	pne.	Geteilt	L	М	Н	L	М	Н	
	bis 20 m/s (4000 ft/min)	Kundenspezifische Lippendichtungen	Serie 400		Rotierende Einzeldichtungen für stark dynamische Anwendungen		√	√	√		1			√			43
	DIS 20 111/3 (4000 IQ111111)	Kontinuierliche rotierende Lippendichtungen	30K		Einfach wirkende Niederdruckdichtung für Lager- und Getriebekastenschutz		√	√	√		√			√			36
	bis 12,5 m/s (2500 ft/min)	Geteilte rotierende Lippendichtungen	33K		Einfach wirkende, druckfreie geteilte Dichtung für Lager- und Getriebeschutz		√			√	√			√			37
2	bis 6 m/s (1200 ft/min)	Mit Elliptische Schraubenfedern vorgespannte Dichtungen	Serie 200	0	Einfach wirkende Dichtung mit elliptischer Feder für große Toleranzen oder Miniaturdesigns	5	√	√	√			√			√		41
ERE	bis 5 m/s (1000 ft/min)	Mit Mäanderfedern vorgespannte Dichtungen	Serie 100		Einfach wirkend mit Mäanderfeder für stark dynamische Anwendungen		√	√	√			√			√		40
ΙĒ	bis 2,5 m/s (500 ft/min)	Mit Stützwendelfedern vorgespannte Dichtungen	Serie 300		Einfach wirkend mit Stützwendelfeder für statische oder langsame Geschwindigkeiten		√	√	√				√				42
8	BIS 2,5 HIVS (500 HV HIIII)	Dachmanschetten	Serie 500		Einfach wirkende Dachmanschetten		√					√			√		44
	bis 0,5 m/s (100 ft/min)	Abstreifer	W5K, W21K		Positiver Profilwinkel mit Flansch, langsame Rotation	√	√	√	√	√		√		√			14
	(וווווון) ניווו ליס כום	Kolben- und Stangendichtungen	R10K, P10K, R22KN, P22KN	K	Einfach wirkend, positiver Profilwinkel, langsame Rotation	1	√	√	√			√		√			16

^{*}Federvorgespannte Dichtungen sind Längsbewegungen erhältlich. Bitte das Werk verständigen. **Für maschinell bearbeitete Produkte ist keine Bearbeitung mit Werkzeugen erforderlich.

KATALOGLEGENDE

In diesem Katalog benutzte Bezeichnungen

Bezeichnung	Beschreibung
A	
b	
	Stangen-, Wellen- oder Kolbendurchmesser
	Durchmesser Kolbendichtungsnut
·	Durchmesser Kolben-Führungbandnut
-	-
	Durchmesser Abstreifersicherungsnut
d,	
d,	·
	Innendurchmesser des L-förmigen Anti-Extrusion-Ringzapfens
c	
D	
•	Durchmesser Stangendichtungsnut/Einbauraum-Bohrung
-	Durchmesser Abstreifergehäuselippenspiel
	Durchmesser Stangen-Führungsbandnut
D ₄	
D _s	-
E	
G	Tiefe Abstreifer-/Dichtungssperrnut
H	Gesamthöhe Dichtung oder Abstreifer
H,	Führungsbandhöhe
H ₂	
	Durchmesser Stangendichtungsträgerspiel
L	Tiefe Dichtungsnut
L,	Tiefe Abstreifernut
L ₂	Tiefe Führungsbandnut
L ₃	Tiefe Arbeitseinbauraum
L ₄	Höhe des L-förmigen Anti-Extrusion-Ringzapfens
M	Innerer/äusserer Kolbenstegbereich
P	Durchmesser Kolbendichtungsträgerspiel
R	Radius
R _c	Bewegungsspiel
S	Querschnitt
ID	Innendurchmesser
AD	Außendurchmesser

PROGRAM

DIFFERENZIERTE PRODUKTE UN

SpeedSeal®

Eigene Servicecenter

Chesterton hat seinen weltweiten Service durch das SpeedSeal-Programm erweitert. Diese voll integrierten Produktionsstätten stützen sich auf fortschrittliche Anlagen in Kombination mit flexiblen Werkzeugen und Halbfertigmaterialien, damit der Kunde eine breite Auswahl an bewährten Produktangeboten erhalten kann, die noch am selben Tag ausgeliefert werden.

- Auslieferung am selben Tag
- Lokaler Kundendienst
- Geschulte Außendienstspezialisten
- · Bewährte Designs

- Technische Erfahrung
- Produktsonder anfertigungen
- Zuverlässige Marke
- Überlegene Werkstoffe

Technische Lösungsansätze

Kundenspezifische Hochleistungsdichtungen

Wir nutzen unsere technische Erfahrungen auf den Gebieten Konstruktion und Werkstoffe zur Entwicklung kundenspezifischer Dichtungen, die die schwierigsten Dichtungsherausforderungen der Gegenwart lösen. Unsere individuellen Designs bieten wegweisende Technologie und werden weltweit mit dokumentiertem Erfolg und Anerkennung verwendet.

- Pumpen und Kompressoren
- Dosiermaschinen
- Dosierinstrumente
- Gelenke
- Betätigungselemente
- Analysatoren
- · Halbleitereinheiten
- Antriebsaggregate
- · Motoren und Getriebe
- Ventile

D ANGEBOTE

Formdichtungen

Beste Zustellung der Branche

Chesterton konstruiert und fertigt bereits seit Jahrzehnten Formdichtungen. Unser umfangreiches Werkzeuglager umfasst tausende Werkzeuge in metrischen und US-Größen, mit denen Durchmesser bis zu 2 Meter bearbeitet werden können. Dieser breite Bereich von Werkzeugen ermöglicht uns das Angebot der besten Lieferkonditionen der Branche für Dichtungen mit großem Durchmesser.

- · Spezialisierung auf große Durchmesser
- · Umfangreiches Werkzeuglager
- · Standardmäßige metrische und US-Größen
- · Kundenspezifische Größen sind erhältlich

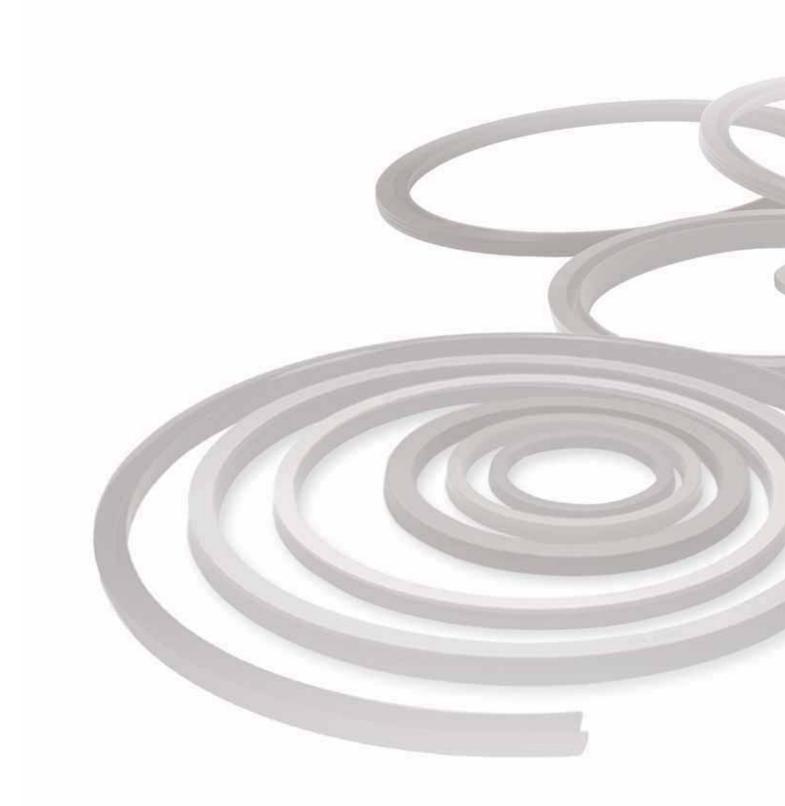
Überlegene Werkstoffe

Weltberühmtes rotes Polymer

Chestertons weltberühmter AWC800-Werkstoff wird weithin als Werkstoff mit den besten Eigenschaften angesehen, der heutzutage erhältlich ist. Außerdem nutzen wir den gesamten Bereich fortschrittlicher Werkstoffe für die anspruchsvollsten Anwendungen.

- Fluoroplaste
- Technische Kunststoffe
- Elastomere

Anlagenverbesserung


Systematischer Ansatz zur Verbesserung der MTBR

Chestertons Anlagenverbesserungsprogramm wendet einen einfachen, systematischen Ansatz zur Verbesserung der Dichtungsleistung bei der Reparatur und der Überholung von Anlagen an. Dazu gehören Dichtungen, Führungsbänder und kundenspezifische Sätze für Zylinder oder Pressen in leichten, moderaten oder anspruchsvollen Anwendungen.

- · Hält den Schmutz draußen
- Hält die Flüssigkeit drinnen
- Unterstützt das System

HYDRAULIK- UND PNEUMATIK- DICHTUNGEN

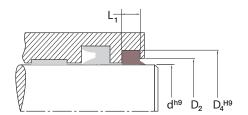
A.W. Chesterton Company ist ein weltweit führender Hersteller und Anbieter der leistungsstärksten Dichtungsvorrichtungen. Die Kombination unserer einzigartigen Produkte, der Unterstützung durch unser technisches Personal und die Expertise unserer technischen Fachleute ermöglicht Ihnen die Zuverlässigkeit zu verbessern und jahrelangen problemlosen Einsatz zu erhalten.

In diesem Abschnitt finden Sie Informationen über die Hydraulik-, Pneumatik- und Zusatzprodukte, die von Chesterton angeboten werden.

Abschnitt I

- Abstreifer
- Stangendichtungen
- Kolbendichtungen
- Zusatzvorrichtungen

Abstreifer 5K und 21K


Verhindern, dass Verunreinigungen in das System gelangen

Das Abstreiferdesign mit positivem Flankenwinkel von Chesterton® reinigt und löst Fremdstoffe wirkungsvoll von einfahrenden Stangen und Kolben, um Riefenbildung und Systemverunreinigung zu vermeiden. Das scharfe, robuste und aufgeweitete Profil bietet Schutz gegen abrasiv wirkende Teilchen, die das System verunreinigen und frühzeitigen Anlagenausfall verursachen können. Diese Abstreifer erzielen an Stangen oder Kolben in Hydraulik- und Pneumatikanwendungen ausgezeichnete Leistung.

21K wird in einem Fertigungsverfahren hergestellt, das Flexibilität zum Erzeugen beliebiger Größen angepasst an die Maschinenabmessungen ermöglicht. Dieses Design umfasst eine integrierte statische Dichtung auf dem Flansch, die gewährleistet, dass Verunreinigungen beim Betrieb nicht entlang der stationären Seite des Abstreifers wandern. Der 5K Super Wiper wird in einem Druckformverfahren hergestellt, bei dem vorhandene Werkzeuge genutzt werden.

Zusätzliche kundenspezifische Entwürfe wurden entwickelt, um spezielle Anwendungsund Anlagenanforderungen durch einrastende, gestufte und bidirektionale Abstreifer zu erfüllen.

SPEZIFIKATIONEN			
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Geschwindigkeit m/s (ft/min)
AWC700 (FKM)	6 bis 152 (1/4 bis 6)	-30 bis 200 (-20 bis 400)	1,5 (300)
AWC800 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis185)	0,9 (185)
AWC805 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	0,5 (100)
AWC830 (EU)	6 bis 254 (1/4 bis 10)	-35 bis 75 (-30 bis 165)	0,9 (185)
AWC860 (EU)	6 bis 508 (1/4 bis 20)	-50 bis 120 (-60 bis 250)	1,25 (250)

- Einfach wirkendes, abriebbeständiges Design für Hydraulik- und Pneumatikanwendungen
- Lippenprofil mit positivem Flankenwinkel wischt Verunreinigungen effektiv von der Oberfläche
- Bearbeitungsvorgang gestattet Flexibilität, damit beliebige Größen erzeugt werden können
- Größen für internationale Normen einschließlich ISO und DIN

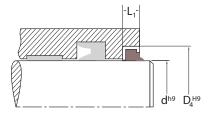
PRODUKTPROFILE:

Abwickeln einer Bestellung:

Produktprofil: ___ Werkstoff: Stangendurchmesser (d): Gehäusedurchmesser (D₂): _ Nutendurchmesser (D₄): _ Nutentiefe (L1):_

Eingepresste Abstreifer 21K

Verhindern, dass Verunreinigungen in das System gelangen


Das Abstreiferdesign mit positivem Flankenwinkel von Chesterton® reinigt und löst Fremdstoffe wirkungsvoll von einfahrenden Stangen und Kolben, um Riefenbildung und Systemverunreinigung in offenen Konstruktionen zu vermeiden. Diese Abstreifer erzielen in Hydraulikanwendungen ausgezeichnete Leistungen.

CW21K wird in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt. Der eingepresste Metallmantel des Abstreifers bietet Stabilität aufgrund einer Presspassung, die das Einpressen in eine Konstruktion mit offener Brille ermöglicht.

Diese Abstreifer sind je nach Anlagenanforderungen in verschiedenen Werkstoffkombinationen erhältlich, während der eingepresste* Teil der Dichtung aus Metallen und technischen Kunststoffen hergestellt werden kann.

SPEZIFIKATIONEN			
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Geschwindigkeit m/s (ft/min)
AWC700 (FKM)	6 bis 152 (1/4 bis 6)	-30 bis 200 (-20 bis 400)	1,5 (300)
AWC800 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	0,9 (185)
AWC830 (EU)	6 bis 254 (1/4 bis 10)	-35 bis 75 (-30 bis 165)	0,9 (185)
AWC860 (EU)	6 bis 508 (1/4 bis 20)	-50 bis 120 (-60 bis 250)	1,25 (250)

^{*}Werkstoff des eingepressten Abstreifers:: AWC 650 (POM) oder AWC665 (Nylon)

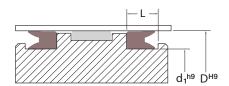
- Die Presspassung erfordert keine Führung durch andere externe Vorrichtungen
- Einfach wirkendes, abriebbeständiges Design für Hydraulikanwendungen
- Lippenprofil mit positivem Flankenwinkel wischt Verunreinigungen effektiv von der Oberfläche
- Bearbeitungsvorgang gestattet Flexibilität, damit beliebige Größen erzeugt werden können
- Größen für internationale Normen einschließlich ISO und DIN

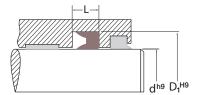
PRODUKTPROFILE:

Abwickeln einer Bestellung:

Stangen- und Kolbendichtungen

10K und 22KN


Ideales Design für Hydraulik- und Pneumatikdichtungen


10K Super Monoseal® und 22KN von Chesterton® sind einfach wirkende Nutring-Ausführungen. Das Lippenprofil mit positivem Flankenwinkel bietet optimale radiale Dichtwirkung bei minimalem Reibungswiderstand. Diese Dichtungskonstruktion wird als Stangen- oder Kolbendichtung angeboten und liefert in Hydraulik- und Pneumatikanwendungen ausgezeichnete Leistungen.

10K Super Monoseal® wird in einem angepassten Formverfahren hergestellt, bei dem vorhandene Werkzeuge genutzt werden. 22KN wird in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt.

Aus dem 10K-Originalmodell wurden verschiedene einzigartige Designs abgeleitet, die spezielle Anforderungen und Anwendungen auf dem Markt abdecken. Dazu gehören Designs für Druckumkehr, Druckspitzen und Systemevakuierung.

SPEZIFIKATIONEN				
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min)
AWC700 (FKM)	6 bis 152 (1/4 bis 6)	-30 bis 200 (-20 bis 400)	345 (5.000)	1,5 (300)
AWC800 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	1035 (15.000)	0,9 (185)
AWC805 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	1035 (15.000)	0,5 (100)
AWC830 (EU)	6 bis 254 (1/4 bis 10)	-35 bis 75 (-30 bis 165)	520 (7.500)	0,9 (185)
AWC860 (EU)	6 bis 508 (1/4 bis 20)	-50 bis 120 (-60 bis 250)	1035 (15.000)	1,25 (250)

PRODUKTPROFILE:

P22KN

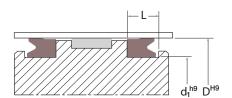
- Einfach wirkendes Nutring-Design minimiert
 Reibungswiderstand
- Lippenprofil mit positivem Flankenwinkel wischt Verunreinigungen von der Passfläche weg
- Abriebbeständiges Design, ausgezeichnete Leistung in Hydraulik- und Pneumatikanwendungen
- Bearbeitungsvorgang gestattet Flexibilität, damit beliebige Größen erzeugt werden können
- Größen für internationale Normen einschließlich ISO und DIN

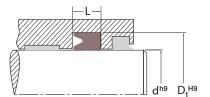
Abwickeln einer Bestellung:

Abwickeln einer Bestellung:

Produktprofil: ______ Werkstoff: _____ Durchmesser Kolbennut (d₁): _____ Durchmesser Zylinderbohrung (D): _____ Nutentiefe (L):

Stangen- und Kolbendichtungen 22K


Spezialgeometrie liefert optimale Hydraulikabdichtung


22K von Chesterton® ist ein einfach wirkendes Nutring-Design mit einer speziellen Lippengeometrie, die über den gesamten Betriebsbereich Null Leckage bietet. Die robuste, statische Lippe stabilisiert die Dichtung und verhindert Rollen, während das dynamische Lippendesign Probleme bei Niederdruckabdichtung eliminiert, zusätzliche Stabilität erzeugt und den Einbau erleichtert. Diese Dichtungskonstruktion wird als Stangen- oder Kolbendichtung angeboten und liefert in Hydraulikanwendungen ausgezeichnete Leistung.

22K wird in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt.

Aus dem 22K-Originalmodell wurden verschiedene zusätzliche Designs abgeleitet, die spezielle Anforderungen und Anwendungen auf dem Markt abdecken. Dazu gehören der Einsatz von Anti-Extrusionsringen bei Anlagen mit übermäßig großem Spiel.

SPEZIFIKATIONEN				
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min)
AWC700 (FKM)	6 bis 152 (1/4 bis 6)	-30 bis 200 (-20 bis 400)	345 (5.000)	1,5 (300)
AWC800 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	1035 (15.000)	0,9 (185)
AWC830 (EU)	6 bis 254 (1/4 bis 10)	-35 bis 75 (-30 bis 165)	520 (7.500)	0,9 (185)
AWC860 (EU)	6 bis 508 (1/4 bis 20)	-50 bis 120 (-60 bis 250)	1035 (15.000)	1,25 (250)

PRODUKTPROFILE:

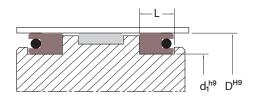
P22KAER1

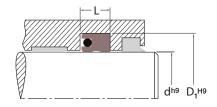
- Einfach wirkendes Nutring-Design mit Null Leckage über den gesamten Betriebsbereich
- Abriebbeständiges Design, ausgezeichnete Leistung in Hydraulikanwendungen
- Lippengeometrie stabilisiert die Dichtung, verhindert Rollen und vereinfacht den Einbau
- Bearbeitungsvorgang gestattet Flexibilität, damit beliebige Größen erzeugt werden können
- Größen für internationale Normen einschließlich ISO und DIN

Abwickeln einer Bestellung:

Abwickeln einer Bestellung:

Produktprofil:
Werkstoff:
Durchmesser Kolbennut (d ₁):
Durchmesser
Zylinderbohrung (D):
Nutentiefe (L):


Stangen- und Kolbendichtungen


Vorgespannte Doppelkomponente für zusätzliche Stabilität

22KE von Chesterton® ist ein einfach wirkendes, kontinuierliches Nutring-Design mit einem integrierten O-Ring, der die Vorspannung erhöht. Der O-Ring spannt die Dichtung, wenn kein Systemdruck vorhanden ist und sorgt für Stabilität bei höheren Temperaturen. Diese Dichtungskonstruktion wird als Stangen- oder Kolbendichtung angeboten und liefert in Hydraulikanwendungen ausgezeichnete Leistung.

22KE wird in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt. Die spezielle Dichtungslippengeometrie bietet optimale Vorspannung zur Maximierung der Wirkung, während die negativ angestellte Flanke den Einbau erleichtert.

SPEZIFIKATIONEN				
*Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min)
AWC700 (FKM)	6 bis 152 (1/4 bis 6)	- 30 bis 200 (-20 bis 400)	345 (5.000)	1,5 (300)
AWC800 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	1035 (15.000)	0,9 (185)
AWC830 (EU)	6 bis 254 (1/4 bis 10)	-35 bis 75 (-30 bis 165)	520 (7.500)	0,9 (185)
AWC860 (EU)	6 bis 508 (1/4 bis 20)	-50 bis 120 (-60 bis 250)	1035 (15.000)	1,25 (250)
*O-Ring-Werkstoff: FKM				

PRODUKTPROFILE:

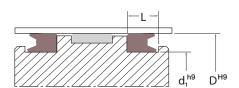
- Einfach wirkendes Nutring-Design mit Null Leckage über den gesamten Betriebsbereich
- *Vorspannung der Dichtung* durch O-Ring und Stabilität bei höherem Druck
- Abriebbeständiges Design, ausgezeichnete Leistung in Hydraulikanwendungen
- Lippengeometrie stabilisiert die Dichtung, verhindert Rollen und vereinfacht den Einbau
- Bearbeitungsvorgang gestattet Flexibilität, damit beliebige Größen erzeugt werden können

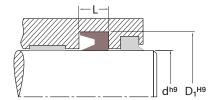
Abwick	celn eine	er Bestel	lung:
ال المام			

Produktprofil: _ Werkstoff: Stangen- oder Kolbendurchmesser (d): _ Bohrungsdurchmesser (D₁): _ Nutentiefe (L): ___

Abwickeln einer Bestellung:

Produktprofil: ___ Werkstoff: Durchmesser Kolbennut (d₁): Durchmesser Zylinderbohrung (D): _ Nutentiefe (L):


Stangen- und Kolbendichtungen 23 K


Optimale Geometrie für Pneumatikdichtungen

Die Dichtung 23K von Chesterton® ist ein einfach wirkendes Nutring-Design mit einer einzigartigen dynamischen Lippengeometrie, die optimale Dichtkraft für Niederdruck-Pneumatikanwendungen erzeugt.

23K wird in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt. Die Lippe mit Radius sorgt für die Aufrechterhaltung eines durchgehenden Schmierfilms, der die Betriebstemperatur und Verschleiß minimiert und für ausgezeichnete Dichtheit sorgt.

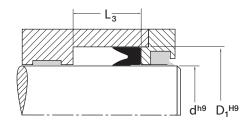
	SPEZIFIKATIONEN				
	Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min)
_	AWC700 (FKM)	6 bis 152 (1/4 bis 6)	-30 bis 200 (-20 bis 400)	9 (125)	1,5 (300)
	AWC800 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)		0,9 (185)
	AWC830 (EU)	6 bis 254 (1/4 bis 10)	-35 bis 75 (-30 bis 165)		0,9 (185)
	AWC860 (EU)	6 bis 508 (1/4 bis 20)	-50 bis 120 (-60 bis 250)		1,25 (250)

PRODUKTPROFILE:

- Einzigartige Lippengeometrie liefert optimale Dichtkraft für Pneumatikanwendungen
- Lippendesign mit Radius gewährleistet einen durchgehenden Schmierfilm, der Verschleiß minimiert
- Bearbeitungsvorgang gestattet Flexibilität, damit beliebige Größen erzeugt werden können
- Größen für internationale Normen einschließlich ISO und DIN

Abwickeln einer Bestellung:				
Produktprofil:				
Werkstoff:				
Stangen- oder Kolben-				
durchmesser (d):				
Bohrungsdurchmesser (D ₁):				
Nutentiefe (L):				

Abwickeln einer Bestellung:			
Produktprofil:			
Werkstoff:			
Durchmesser Kolbennut (d ₁):			
Durchmesser			
Zylinderbohrung (D):			
Nutentiefe (L):			


Stangendichtungen **6K**

Robuste Bauweise für ältere, abgenutzte Anlagen

6K von Chesterton® ist ein einfach wirkendes Nutring-Design mit einer Lippe mit positivem Flankenwinkel, die während des Betriebs Verunreinigungen von der Passfläche wischt. Die robuste, auf Gummi basierende Konstruktion eignet sich ideal für ältere, abgenutzte Anlagen, da sie sich an Oberflächenunregelmäßigkeiten anpasst und Leckage wirkungsvoll verhindert. Dieses Stangendichtung-Design erzielt in älteren, abgenutzten Hydraulikzylindern und -pressen ausgezeichnete Leistung.

6K wird in einem angepassten Formverfahren hergestellt, bei dem vorhandene Werkzeuge genutzt werden. Jede Dichtung wird einzeln aus einem mit Gummi verstärkten Grundwerkstoff hergestellt.

SPEZIFIKATIONEN				
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min)
AWC735 Neopren (NR)	100 bis 1.143 (4 bis 45)	- 25 bis 121 (- 13 bis 250)	207 (3000)	0,6 (120)
AWC747 Buty (IIR)	100 bis 1.143 (4 bis 45)	- 25 bis 121 (- 13 bis 250)	207 (3000)	0,6 (120)

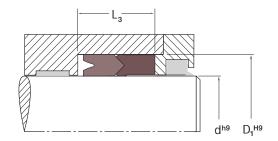
PRODUKTPROFILE:

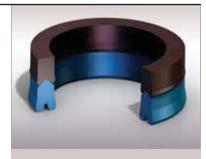
- Positiver Flankenwinkel wischt Verunreinigungen von der Passfläche
- Robuste Ringausführung eignet sich für ältere, abgenutzte Anlagen
- Werkstoff auf Gummibasis passt sich Oberflächenunregelmäßigkeiten an und verhindert Leckage
- Werkstoffe auf Neoprenbasis liefern in Wasser und Öl gute Leistung
- Werkstoffe auf Butylbasis eignen sich gut für Phosphatester-Flüssigkeiten

Abwickeln einer Bestellung:

Produktprofil: ______ Werkstoff: _____ Stangendurchmesser (d): _____ Durchmesser Einbauraum (D₁): ____ Nutentiefe (L):

Stangendichtungen 11 K


Geteilter Zwei-Komponenten-Dichtsatz für Hydraulikabdichtung


11K EZ Stack Pack von Chesterton® ist ein einfach wirkender, zweigeteilter Dichtsatz. Die Lippe hat einen negativen Flankenwinkel, um die Wirkung im Betrieb zu optimieren und gleichzeitig den Einbau in den Dichtraum zu vereinfachen. Das einzigartige, geteilte Design, bestehend aus zwei Komponenten, eliminiert den Bedarf zur Anlagendemontage und Korrekturen durch Unterlegscheiben. Sie wird für den Einsatz in Hydraulikzylindern und -pressen empfohlen.

11K EZ Stack Pack kann im herkömmlichen Druckformverfahren oder einem maschinellen Bearbeitungsverfahren hergestellt werden, das Flexibilität zum Erzeugen beliebiger Größen angepasst an die Maschinenabmessungen gewährleistet.

Der unterste Ring ist die Primärmanschette, während der obere Ring als sekundäre Manschette und als Anti-Extrusionsring wirkt. Der Satz ist in verschiedenen Werkstoff-kombinationen für neue und alte Anlagen erhältlich und kann geteilt oder geschlossen geliefert werden.

SPEZIFIKATIONEN				
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min)
AWC700 (FKM)	6 bis 152 (1/4 bis 6)	-30 bis 200 (-20 bis 400)	345 (5.000)	1,5 (300)
AWC800 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	1035 (15.000)	0,9 (185)
AWC805 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	1035 (15.000)	0,5 (100)
AWC830 (EU)	6 bis 254 (1/4 bis 10)	-35 bis 75 (-30 bis 165)	520 (7.000)	0,9 (185)
AWC860 (EU)	6 bis 508 (1/4 bis 20)	-50 bis 120 (-60 bis 250)	1035 (15.000)	1,25 (250)

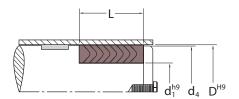
- Das geteilte Design (Patent angemeldet)
 eliminiert den Bedarf für Anlagendemontage
- Negativer Flankenwinkel der Lippe optimiert
 Betriebsleistung und vereinfacht den Einbau
- Keine Korrekturen durch Unterlegscheiben, eliminiert aufwändige Berechnungen und Nachstellungen
- Kombination von zwei
 Werkstoffen eignet sich gut in neuen und abgenutzten
 Anlagen
- Größen für internationale Normen einschließlich ISO und DIN

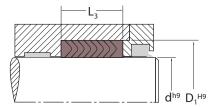
PRODUKTPROFILE:

Abwickeln einer Bestellung: Produktprofil: _______ Werkstoff: ______ Stangen- oder Kolbendurchmesser (d): ______ Bohrungsdurchmesser (D₁): ______ Nutentiefe (L₃): ______

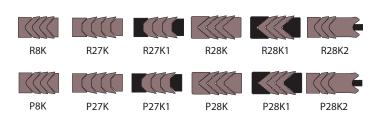
Stangen- und Kolbendichtungen

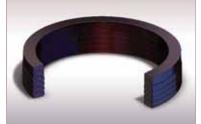
8Kund 27K


Druckempfindliche Dachmanschette für Hydraulikabdichtungen


8K und 27K von Chesterton® sind einfach wirkende, V-Ring-Dachmanschetten mit positivem Flankenwinkel, um optimale Betriebsleistung zu erzielen. Zum Unterschied von herkömmlichen Dachmanschetten erfolgt der Kontakt über die Mitte, um eine gleichmäßige Belastung, längere Dichtungsstandzeit und minimalen Deckeldruck sicherzustellen. Diese Manschetten sind in geteilten oder geschlossenen Ausführungen erhältlich und bieten ausgezeichnete Leistung in Hydraulikanwendungen mit geschlossenen Einbauräumen.

Die 8K ist eine formgepresste Dachmanschette, die mit Werkzeugen zum Endprodukt fertigbearbeitet wird. Die 27K wird in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt. Jeder Satz enthält einen Außen- und Innenadapter zur Ausrichtung und Führung der Dichtungsringe.


Aus dem 8K-Originalmodell wurden zusätzliche Profile abgeleitet, die spezielle Anforderungen und Anwendungen auf dem Markt abdecken. Dazu gehören Designs für übermäßiges Spiel und tiefe Einbauräume.


SPEZIFIKATIONEN				
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min)
AWC700 (FKM)	6 bis 152 (1/4 bis 6)	-30 bis 200 (-20 bis 400)	345 (5.000)	1,5 (300)
AWC800 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	1035 (15.000)	0,9 (185)
AWC805 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	1035 (15.000)	0,5 (100)
AWC830 (EU)	6 bis 254 (1/4 bis 10)	-35 bis 75 (-30 bis 165)	520 (7.500)	0,9 (185)
AWC860 (EU)	6 bis 508 (1/4 bis 20)	-50 bis 120 (-60 bis 250)	1035 (15.000)	1,25 (250)

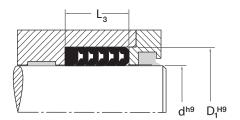
PRODUKTPROFILE:

- Gleichmäßig Stapelbelastung ermöglicht eine schnellere Reaktion bei weniger Reibung und optimaler Dichtkraft
- Aufgeweitete, druckempfindliche Lippe; Dichtkräfte reagieren auf Druck
- Als geteilte Komponenten für einfache Montage geliefert
- Größen für internationale Normen einschließlich ISO und DIN

Abwickeln einer Bestellung:

Abwickeln einer Bestellung:

Stangendichtungen 600


Über Stopfbuchsbrille vorgespannte Dachmanschette für ältere, abgenutzte Anlagen

Chesterton® 600 ist ein einfach wirkender V-Profilringsatz, der den Deckelandruck so überträgt, dass alle Ringe gleich belastet werden. Die robuste, auf Gummi basierende Konstruktion eignet sich ideal für ältere, abgenutzte Anlagen, da sie sich an Oberflächenunregelmäßigkeiten anpasst und Leckage wirkungsvoll verhindert. Dieser Dichtungssatz erzielt in älteren, abgenutzten Hydraulikzylindern und -pressen ausgezeichnete Leistung.

600 ist gewöhnlich eine formgepresste Dachmanschette, die mit Werkzeugen zum Endprodukt fertigbearbeitet wird. Die Manschetten sind in geteilter oder geschlossener Ausführung erhältlich.

Jeder Dichtungsring wird einzeln mit einer flachen Sitzfläche hergestellt, damit der Deckelandruck beim Festziehen durch den Satz übertragen wird. Eine spezielle Bodenmanschette sorgt für gleichmäßige Belastung, Zentrierung und Führungswirkung.

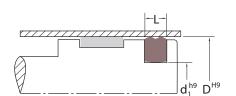
SPEZIFIKATIONEN				
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min)
AWC735 Neopren (NR)	12,7 bis 914 (1/2 bis 36)	-25 bis 121 (-13 bis 250)	345 (5000)	0,6 (120)
AWC747 Butyl (IIR)	12,7 bis 914 (1/2 bis 36)	-25 bis 121 (-13 bis 250)	345 (5000)	0,6 (120)

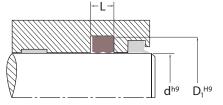
- Werkstoffe auf Gummibasis passen sich Oberflächenmängeln an und verhindern Leckage
- Werkstoffe auf Neoprenbasis liefern in Wasser und Öl gute Leistung
- Werkstoffe auf Butylbasis eignen sich gut für Phosphatester-Flüssigkeiten
- Geteilte Bauweise vereinfacht die Montage

PRODUKTPROFILE:

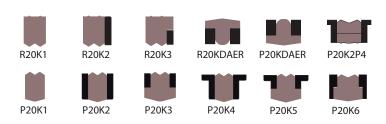
Abwickeln einer Bestellung: Produktprofil: Werkstoff: Stangen- oder Kolbendurchmesser (d): Bohrungsdurchmesser (D₁): Arbeitstiefe (L₃):

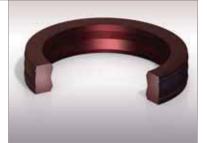
Stangen- und Kolbendichtungen


Robuste bidirektionale Hydraulikdichtung für langsame Geschwindigkeit


20K Duoseal von Chesterton® ist eine kontinuierliche, bidirektionale Kompressionsdichtung mit zwei unabhängigen Dichtungsstellen. Das robuste, dauerhafte Doppellippenprofil wurde speziell für Einbauräume mit einer Nut in Hochdruck-Hydraulikanwendungen entwickelt.

20K Duoseals werden in unserem einzigartigen Bearbeitungsverfahren hergestellt, das Rüstkosten für neue Größen eliminiert. Das robuste Dichtungsdesign hält Druckspitzen stand und reduziert gleichzeitig die Auswirkungen von seitlichen Belastungen.


Zusätzliche Designs wurden entwickelt, um spezielle Anwendungs- und Anlagenanforderungen zu erfüllen, einschließlich verschiedene Anti-Extrusionsvorrichtungen für übermäßiges Spiel und Druckspitzen.


SPEZIFIKATIONEN				
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min)
AWC700 (FKM)	6 bis 152 (1/4 bis 6)	-30 bis 200 (-20 bis 400)	345 (5.000)	0,75 (150)
AWC800 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	1035 (15.000)	0,5 (100)
AWC830 (EU)	6 bis 254 (1/4 bis 10)	-35 bis 75 (-30 bis 165)	520 (7.500)	0,5 (100)
AWC860 (EU)	6 bis 508 (1/4 bis 20)	-50 bis 120 (-60 bis 250)	1035 (15.000)	0,62 (125)

PRODUKTPROFILE:

- Doppelt wirkend, Hochdruck-Hydraulikanwendungen über 35 bar (500 psi)
- Idealer Ersatz für 2-, 3- oder 4-teilige Enddeckel-Dichtungsbaugruppen
- 20K wird in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt
- Größen für internationale Normen einschließlich ISO und DIN

Abwickeln einer Bestellung:

Produktprofil: Werkstoff: Stangen- oder Kolbendurchmesser (d): Bohrungsdurchmesser (D₁): _ Nutentiefe (L): _

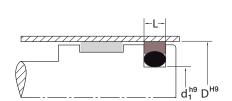
Abwickeln einer Bestellung:

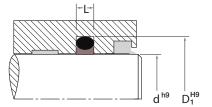
Produktprofil: _ Werkstoff: Durchmesser Kolbennut (d₁): Durchmesser Zylinderbohrung (D): Nutentiefe (L):

Stangen- und Kolbendichtungen

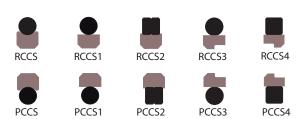
CCS

Zweikomponentensystem für bidirektionale Dichtungen


CCS-Dichtungen (Custom Cap Seals) von Chesterton® sind speziell angefertigte bidirektionale Stangen- oder Kolben-montierte Dichtungen aus PTFE der zweiten Generation. PTFE der zweiten Generation bietet verbesserte Leistung gegenüber herkömmlichen Werkstoffen. Jede Dichtung wird einzeln hergestellt und bietet ausgezeichnete Leistung beim Einsatz in doppelt wirkenden Hydraulikanwendungen mit einer Dichtringnut.


Jede CCS-Dichtung wird in unserem Bearbeitungsverfahren hergestellt, das Rüstkosten für neue Größen eliminiert. Diese Gleitringkonstruktion besteht aus einem zweiteiligen Dichtsatz, der einen Gleitring mit einem O-Ring kombiniert, um eine äußerst wirksame Dichtung zu ergeben. Der Gleitring dient als dynamisches Dichtungselement, während der O-Ring den Gleitring spannt und eine statische Dichtung erzeugt.

Zusätzliche Designs erfüllen die speziellen Anwendungs- und Anlagenanforderungen. Beide Komponenten sind in verschiedenen Werkstoffen verfügbar, damit diese Dichtung an die jeweiligen Betriebsanforderungen angepasst werden kann.


SPEZIFIKATIONEN			(
Deckelwerkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min) Rotierung/ <i>Längsbewegung</i>
*AWC800 (EU)		-35 bis 85 (-30 bis 185)	345 (5.000)	0,5 (100)/0,85 (185)
*AWC860 (EU)		-35 bis 120 (-30 bis 250)		0,75 (150)/1,25 (250)
**AWC220 (8 % glasfasergefülltes PTFE)	19 bis 380 (3/4 bis 15)	-35 bis 200 (-30 bis 400)		5,0 (960)/15 (3.000)
**AWC440 (10 % kohlegefülltes PTFE)		-35 bis 200 (-30 bis 400)		5,0 (960)/15 (3.000)
**AWC550 (60 % bronzegefülltes PTFE)		-35 bis 200 (-30 bis 400)		5,0 (960)/15 (3.000)

^{*}Buna-Vorspannring

PRODUKTPROFILE:

- PTFE der zweiten Generation bietet verbesserte Leistung
- Kompressionsdichtung, die die Dichtkraft bei zunehmendem Systemdruck erhöht
- Bewährte Dichtungskonstruktion liefert vorhersehbare Leistung
- Größen für internationale Normen einschließlich ISO und DIN

Abwickeln einer Bestellung:

Produktprofil:

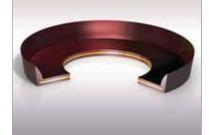
Werkstoff:

Stangen- oder Kolbendurchmesser (d):

Bohrungsdurchmesser (D₁):

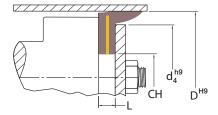
Nutentiefe (L):

Abwickeln einer Bestellung:


^{**}FKM-Vorspannring

Stangen- und Kolbendichtungen **7** K

Topfmanschette mit starrem Manschettenboden für Hydraulikdichtungen


Die 7K Topfmanschette von Chesterton® ist eine einfach wirkende Topfmanschette mit positivem Lippenflankenwinkel, der die dynamischen Dichtkräfte optimiert. Die robuste Bauweise ist der ideale Ersatz zum Umstieg weg von herkömmlichen Gummimanschetten in Hydraulik- oder Pneumatikanwendungen.

Die 7K wird in einem angepassten Formgebungsverfahren hergestellt. Eine Messing-Verstärkungsscheibe ist in den Manschettenboden eingeformt. Der resultierende starre Manschettenboden erzeugt eine stabile, verzerrungs- und nicht extrudierende Dichtung, während der Öffnungsdurchmesser den anlagenspezifischen Erfordernissen entsprechend angepasst werden kann. 7K1 besteht komplett aus Polyurethan und wird in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt.

- Positiver Flankenwinkel optimiert die Dichtkräfte.
- Messing-Verstärkungsscheibe verbessert die Dichtungsleistung
- Langlebige Schalenform schwillt nicht an, verformt sich nicht, klemmt oder schleift nicht

SPEZIFIKATIONEN				<u></u>
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck bar (psi)	Geschwindigkeit m/s (ft/min)
AWC800 (EU)	25 bis 711 (1 bis 28)	-50 bis 85 (-60 bis 185)	207 (3.000)	0,9 (185)
AWC805 (EU)	25 bis 711 (1 bis 28)	-50 bis 85 (-60 bis 185)	207 (3.000)	0,5 (100)

PRODUKTPROFILE:

Abwickeln einer Bestellung:

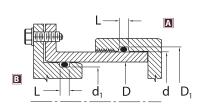
Produktprofil: _____ Werkstoff: ____ Durchmesser Kolbenbohrung (D): _

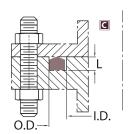
Durchmesser Kolbenbonrung (D): _

Niederhalteplatte (d₄): ____ Nutentiefe (L):

Öffnungsdurchmesser (CH): _

Flansch- und statische Dichtungen 20KL


O-Ring-Verbesserung für statische Dichtungen

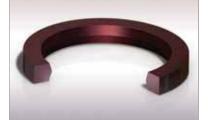

Der 20K D-Ring von Chesterton® ist eine kontinuierliche Kompressionsdichtung zum Einsatz in statischen Anwendungen und wird häufig als Verbesserung von herkömmlichen Flanschdichtungen oder O-Ring-Designs benutzt. Dieses Design erzielt ausgezeichnete Leistung bei Anwendungen in Hydraulik- oder Pneumatikanlagen, einschließlich Flansch- und Ventileinheiten.

Jede Dichtung wird in unserem einzigartigen maschinellen Bearbeitungsverfahren einzeln hergestellt, das Rüstkosten für neue Größen eliminiert.

Eine kontinuierliche Hochleistungs-Kompressionsdichtung, die üblicherweise zum Einsatz in statischen Anwendungen und häufig als Verbesserung von herkömmlichen O-Ringen benutzt wird. Designs sind für interne Flanschdichtungen sowie externe Flanschdichtungen erhältlich, die in einfach und doppelt wirkenden Anwendungen benutzt werden.

SPEZIFIKATIONEN			<u> </u>
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druck Bar (psi)
AWC700 (FKM)	6 bis 152 (1/4 bis 6)	-30 bis 200 (-20 bis 400)	345 (5.000)
AWC800 (EU)	6 bis 1320 (1/4 bis 52)	-50 bis 85 (-60 bis 185)	1035 (15.000)
AWC830 (EU)	6 bis 254 (1/4 bis 10)	-35 bis 75 (-30 bis 165)	517 (7.500)
AWC860 (EU)	6 bis 508 (1/4 bis 20)	-50 bis 120 (-60 bis 250)	1035 (15.000)

PRODUKTPROFILE:



- Leistungsverbesserung von herkömmlichen Flanschdichtungen und O-Ringen
- Gegenüber herkömmlichen Werkstoffen ausgezeichnete Verschleiß-, Extrusions- und Abriebbeständigkeit
- Geringer Druckverformungsrest (Compression Set)
- Einzigartiger Herstellungsvorgang gestattet Flexibilität, damit beliebige Größen erzeugt werden können
- Größen für internationale Normen einschließlich ISO und DIN

Abwickeln einer Bestellung:

Produktprofil:

Werkstoff:

Stangen- oder Kolbendurchmesser (d):

Bohrungsdurchmesser (D₁):

Nutentiefe (L):

Abwickeln einer Bestellung:

Produktprofil:

Werkstoff:

Durchmesser Kolbennut (d₁):

Durchmesser

Zylinderbohrung (D):

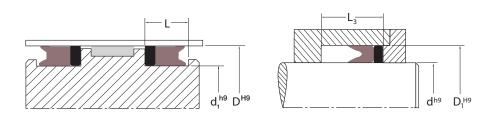
Nutentiefe (L):

Abwickeln einer Bestellung:

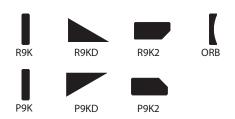
Produktprofil:
Innendurchmesser (ID):

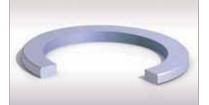
Außendurchmesser (OD):

Nutentiefe (L):


Anti-Extrusionsringe **9K**

Verhindert Extrusion von Hydraulikdichtungen


9K Anti-Extrusionsringe von Chesterton® verhindern, dass Dichtungen oder O-Ringe unter Druck in den Spalt hinein gepresst werden. Jeder Ring wird einzeln hergestellt und liefert ausgezeichnete Leistung als tragendes Bauteil für Kolben- und Stangendichtungen, die im allgemeinen in statischen oder dynamischen Hydraulikanwendungen eingesetzt werden.


9K Anti-Extrusionsringe von Chesterton® werden in einem Bearbeitungsverfahren hergestellt, das ein Endprodukt in allen Größen angepasst auf die Anlagenabmessungen ergibt. Diese Anti-Extrusionsringe sind in unterschiedlichen extrusionsbeständigen Werkstoffen erhältlich und werden an der Rückseite oder Niederdruckseite der geführten Dichtung eingebaut. Anti-Extrusionsringe sind in verschiedenen Werkstoffen und kundenspezifischen Profilen erhältlich, einschließlich rechteckigen, kontinuierlichen, konturierten oder geteilten Designs.

SPEZIFIKATIONEN		<u></u>		\bigcirc
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)		Temperatur °C (°F)	
AWC800 (EU)	6 bis 1320 (1/4 bis 52)	- 50 bi	s 85 (- 60 bis 185)	
AWC520 (Hochreines PTFE)	6 bis 1320 (1/4 bis 52)	Kryogen bis	230 (Kryogen bis	450)
AWC650 (Acetal)	6 bis 381 (1/4 bis 15)	- 30 bi	s 90 (- 20 bis 200)	
AWC665 (Nylon mit MoS ₂)	>381 bis 915 (>15 bis 36)	- 40 bis	s 105 (- 40 bis 212)	

PRODUKTPROFILE:

- Verhindert Extrusion der Dichtung in Anlagenspalt, verbesserte MTBR
- Statische und dynamische Anwendungen, werksweiter Einsatz
- Bearbeitungsvorgang gestattet Flexibilität, damit beliebige Größen erzeugt werden können
- Erhältlich mit verschiedenen Profilen und in verschiedenen Werkstoffen
- Antiextrusionsring verhindert das Fließen der Dichtung

Αb	wi	ck	eln (einer	Bestel	lung:
_			_			

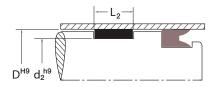
Abwickeln einer Bestellung:

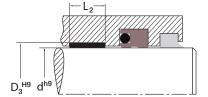
Produktprofil: ______ Werkstoff: ______ Durchmesser Kolbennut (d₁): _____ Durchmesser Zylinderbohrung (D): _____ Nutentiefe (L):

16K und 17 Führungsbänder

Auswechselbare Hochleistungs-Führungsbänder für Pressen

Auswechselbare 16K und 17K Führungsbänder von Chesterton® sind die Lösung für teure Zylinderüberholungen und Reparaturen für Hydraulik- und Pneumatikanlagen mit großen Durchmessern. Diese geteilten, auswechselbaren Führungsbänder verhindern Riefenbildung bei Metallkontakt und verringern die Radialbewegung; dadurch werden Dichtungs- und Anlagenlebensdauer verlängert.


Die geteilten, kontinuierlichen Spulen bestehen aus einer Kombination von Verbundstoff-Polyesterharz, das mit synthetischen Fasern zur Führung von schweren Lasten verstärkt ist. Durch die ausgezeichneten mechanischen Eigenschaften und die integrierten Schmierstoffe eignet sich dieses Führungsband für Kolben und Stangen in Anwendungen mit Längsbewegungen.


SPEZIFIKATIONEN			<u> </u>	
Werkstoff (Bezeichnung)	*Größenbereich mm (Zoll)	Temperatur °C (°F)	Druckfestigkeit N/mm² (psi)	Geschwindigkeit m/s (ft/min)
AWC640 Polyesterharz-Grafit	300 bis 1575 (12 - 62)	- 40 bis 121 (- 40 bis 250)	345 (50.000)	1,0 (200)

*Spulenlänge = 5 Meter

Metrische Größen von 16K					
Querschnitt, (S) mm	(H ₁), mm	Durchmesserbereich (d/D), mm			
2,5	15				
2,5	20				
2,5	25	300 bis 1575			
4,0	25				
4,0	30				

	US-Größen von 1	7K
Querschnitt, (S) Zoll	(H ₁), Zoll	Durchmesserbereich (d/D), Zoll
	1,000	
0,125	1,500	12 bis 62
	2,000	

PRODUKTPROFILE:

- Verhindern Riefenbildung bei Metall-Metall-Kontakt, verlängern die Anlagenlebensdauer
- Verringern radiale Bewegung, verlängern die Standzeit der Dichtung
- Integrierter Schmierstoff sorgt für niedrigen Reibungsbeiwert der Passflächen
- Geteilte kontinuierliche Spule für Anlagen mit großem Durchmesser

Abwickeln einer Bestellung:

Produktprofil: ___ Werkstoff: Stangen- oder Kolbendurchmesser (d): _ Nutendurchmesser (D₃): _ Nutentiefe (L2):___

Abwickeln einer Bestellung:

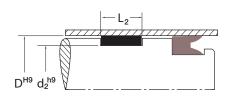
Produktprofil: _____ Werkstoff: Nutendurchmesser (d₂): _ Durchmesser Zylinderbohrung (D): ___ Nutentiefe (L₂):____

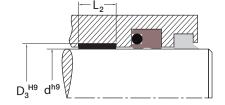
Führungsringe 18K und 19K

Auswechselbare Hochleistungs-Führungsringe für Zylinder

Auswechselbare Führungsringe von Chesterton® sind die Lösung für teure Zylinderüberholungen und Reparaturen für Hydraulik- und Pneumatikanlagen. Diese geteilten, auswechselbaren Führungsringe verhindern Metallkontakt von bewegten Teilen und verlängern die Anlagenlebensdauer. Beim Einbau im Rahmen der Zylinderreparatur wird das Risiko wiederholt auftretender Schäden beachtlich verringert.

Die benutzerfreundlichen geteilten Designs 18K und 19K werden aus einem mit Glasfasern verstärkten Thermoplast-Polyimidharz (hitzestabilisiertes Nylon) hergestellt. Diese Ringe verringern radiale Bewegung und verlängern die Standzeit der Dichtung. Durch die ausgezeichneten mechanischen Eigenschaften und die integrierten Schmierstoffe eignen sie sich für den Einsatz an Kolben und Stangen in Anwendungen mit Längs- und Rotationsbewegungen sowie statischen Anwendungen.


SPEZIFIKATIONEN			<u> </u>	_
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druckfestigkeit MP a (psi) ASTM D695	Geschwindigkeit m/s (ft/min)
AWC660 40 % Glasfasergefülltes Nylon	bis 400 (bis 15,750)	- 40 bis 121 (- 40 bis 250)	158,8 (23.000)	1,25 (250)


Me	trische Designs	von 19K
Querschnitt, (S) mm	Höhe (H ₁), mm	Außendurchmesser- bereich (AD), mm
	5	20 bis 140
2.5	9	55 bis 220
2,5	14	70 bis 400
	24	315 bis 400

Querschnitt, (S) Zoll	Höhe (H ₁), Zoll	Außendurchmesser- bereich (AD), Zoll		
	0,375	1 bis 4		
0.125	0,500	1,5 bis 6		
0,125	0,750	3,5 bis 8		
	1,000	4 bis 20		

US-Designs von 18K

*Andere Werkstoffe auf Anfrange erhältlich.

PRODUKTPROFILE:

- Heiß stabilisiertes Nylon hat die gleiche Tragkraft ist jedoch billiger als Bronze
- Auswechselbare Führungsbänder verhindern Riefenbildung bei Metall-Metall-Kontakt und verlängern die Anlagenlebensdauer
- Verringern radiale Bewegung und verlängern damit die Standzeit der Dichtung
- Nachträglicher Einbau in Lagernuten und eliminiert unnotwendige Modifizierungen
- Geteilte Bauweise reduziert Stillstandszeiten

Nbwickeln	einer	Bestel	lung:
-----------	-------	--------	-------

Produktprofil:

Werkstoff:

Stangen- oder Kolbendurchmesser (d):

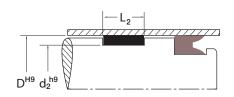
Nutendurchmesser (D₃):

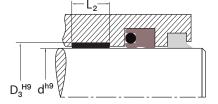
Nutentiefe (L₂):

Abwickeln einer Bestellung:

Kundenspezifische Führungsringe W

Kundenspezifische Ersatzführungsringe


Kundenspezifische Führungsringe von Chesterton® sind die Lösung für teure Zylinderüberholungen und Reparaturen für Hydraulik- und Pneumatikanlagen. Diese geteilten, auswechselbaren Führungsringe verhindern Metallkontakt von bewegten Teilen und verlängern die Anlagenlebensdauer. Beim Einbau im Rahmen der Zylinderreparatur wird das Risiko wiederholt auftretender Schäden beachtlich verringert.


Diese Führungsringe verringern radiale Bewegung und verlängern die Standzeit der Dichtung. Durch die ausgezeichneten mechanischen Eigenschaften eignen sie sich für den Einsatz mit Kolben und Stangen in Anwendungen mit Längsbewegungen.

Verschiedene Designs und Werkstoffe erhältlich – einschließlich WR, P9KL, R9KL, WRTP, WRTR, WRUP, WRUR, die spezielle Anforderungen und Anwendungen auf dem Markt abdecken.

SPEZIFIKATIONEN		C	†	\bigcirc
*Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Druckfestigkeit (ASTM/ISO- Prüfung	Geschwindigkeit m/s (ft/min)
AWC630	25 bis 152	-45 bis 175	20.000	1 (200)
Ungefülltes PEEK®	(1 bis 6)	(-50 bis 350)	ASTM D695	
AWC635	25 bis 152	-45 bis 175	26.000	1 (200)
Glasfasergefülltes PEEK®	(1 bis 6)	(-50 bis 350)	ASTM D695	
AWC650	25 bis 381	-31 bis 73	8.000	1 (200)
Acetal (POM)	(1 bis 15)	(-25 bis 165)	ASTM D695	
AWC665	381 bis 914	-40 bis 105	14.000	1 (200)
Nylon mit MoS₂	(15 bis 36)	(-40 bis 212)	ISO 604	

^{**}Andere Werkstoffe auf Anfrage erhältlich. PEEK® ist eine Schutzmarke von Victrex, plc.

PRODUKTPROFILE:

- Auswechselbare Führungsringe, kosteneffektive
 Methode zur Verbesserung der Anlagenleistung
- Verringern radiale
 Bewegung, verhindern
 Kontakt von Metall zu Metall und verlängern die Standzeit der Dichtung
- Kundenspezifische Führungsringe eliminieren unnotwendige Modifizierungen
- Führungsringe werden in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt

Abwickeln einer Bestellung:

Produktprofil:

Werkstoff:

Stangen- oder Kolbendurchmesser (d):

Nutendurchmesser (D₃):

Nutentiefe (L₂):

Abwickeln einer Bestellung:

Produktprofil:
Werkstoff:
Nutendurchmesser (d ₂):
Durchmesser
Zylinderbohrung (D):
Nutentiefe (L ₂):

ROTIERENDED

INNOVATIVE, DIFFERENZIERTE PRODUKTE

Lager- und Getriebeschutz

Innovative Designs

Chesterton bietet eine vollständige Auswahl an rotierenden Produkten speziell für den Lager- und Getriebeschutz. Dazu gehört unsere Technologie der geteilten Dichtung 33K (Patent angemeldet), die den Bedarf für Anlagendemontage eliminiert.

- SCHNELL
- EINFACH
- ZUVERLÄSSIG

Federvorgespannte Dichtungen

Fortschrittliche Polymerdichtungen für anspruchsvolle Umgebungen

Federvorgespannte Dichtungen von Chesterton sind die neuesten Produkte fortschrittlicher Polymerdichtungen, die für die Industrie angeboten werden. Diese Produkte werden in verschiedensten Anwendungen eingesetzt, in denen herkömmliche Polymerdichtungen aufgrund von zu hoher Geschwindigkeit, von chemischem Angriff oder zu hohen Temperaturen keine guten Leistungen liefern.

- Präzisionsbearbeitete Dichtungen
- · Eignung für Hochgeschwindigkeit
- Ausgezeichnete chemische Verträglichkeit
- · Geeignet für extremen Druck
- · Unbegrenzter Größenbereich

ICHTUNGEN

Drosselbuchsen

Robuste Designs für Rotationsmaschinen

Drosselbuchsen von Chesterton dienen zum Einsatz in rotierenden Anwendungen zur Bildung einer Barriere zwischen der Dichtung im Einbauraum oder dem Pumpenlaufradgehäuse und der Flüssigkeit im Mischtank. Diese Buchsen verringern die Spülflüssigkeitsmenge, verhindern Systemkontamination und verlängern die Lebensdauer von Packungsringen und Dichtung.

- Verringern die Spülflüssigkeitsmenge
- Verlängern die Standzeit von Dichtringen und Dichtung

Modernste Werkstoffe

Für die anspruchsvollsten Anwendungen

Chesterton wählt die korrekten Werkstoffe für Ihre jeweiligen Anwendungsanforderungen aus. Diese fortschrittlichen Werkstoffe haben sich im Einsatz in extremen Druck- und Temperaturbereichen bewährt – auch in den anspruchsvollsten Anwendungen.

- Fluoroplaste
- · Technische Kunststoffe
- Elastomere

Kundenspezifische Polymer-Dichtungen

Anwendungen mit langsamer Rotation

Chesterton bietet eine breite Auswahl an Produkten speziell für Anwendungen in langsam rotierenden Anlagen. Mit Hilfe unserer Thermoset-Polyurethanwerkstoffe können unsere Ingenieure eine Dichtung konzipieren, die Ihre Anforderungen exakt erfüllt.

- Dauerhafte rotierende Dichtungen auf Polymer-Basis
- Maximale Leistung und bewährte Zuverlässigkeit

ROTIERENDE UND FEDERVORGESPANNTE DICHTUNGEN

A.W. Chesterton Company ist ein weltweit führender Hersteller und Anbieter der leistungsstärksten Dichtungen. Die Kombination unserer einzigartigen Produkte, der Unterstützung durch unser technisches Personal und die Expertise unserer technischen Fachleute ermöglicht Ihnen die Zuverlässigkeit zu verbessern und jahrelangen problemlosen Einsatz zu erhalten.

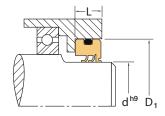
In diesem Abschnitt finden Sie spezielle Informationen über die rotierenden und federvorgespannten Produkte, die von Chesterton angeboten werden.

Abschnitt II

- Rotierende Dichtungen
- Federvorgespannte Dichtungen

Lager- und Getriebeschutz 30K

Hochleistungs-Lippendichtungen für Lager- und Getriebeschutz


30K Lippendichtungen von Chesterton® sind Hochleistungs-Lippendichtungen, die sich ideal für dynamisch rotierende Dichtungsanwendungen eignen. Diese Dichtungen verhindern das Eindringen von externen Verunreinigungen in das Gehäuse und liefern ausgezeichneten Dienst in Lager- und Getriebeanwendungen, bei denen herkömmliche Lippendichtungen zum Abdichten von Öl benutzt werden.

Die 30K wird in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt. Die 30K wird in anderen einzigartigen Ausführungen angeboten, die auf Ihren Anwendungsanforderungen basieren und berücksichtigen, ob ein eingebauter Abstreifer erforderlich oder das Platzangebot begrenzt ist.

Die einzigartige Ausführung der 30K Lippendichtung hat eine Dichtgeometrie für optimale mechanische Dichtkraft und ist in 4 verschiedenen PTFE-Werkstoffen erhältlich, die speziell für Dichtungsanwendungen entwickelt wurden. Die PTFE-Werkstoffe bieten gemeinsam mit der Dichtungskonstruktion eine ausgezeichnete Verträglichkeit mit Flüssigkeiten und erzielen erstklassige Leistungen.

SPEZIFIKATIONEN						\bigcirc
Werkstoff (Kombination) (Adapter/Dichtungsringe	Größenbereicl mm (Zoll))	h Temperatur °C (°F)	Geschwin- digkeit m/s (ft/min)	Druck bar (psi)	Empfohlener Einsatz	Gleit- fläche (Rockwell C)
AWC100 (PTFE) Polyimid					Ausgezeichnet in trockenen Anwendungen Ausgezeichnet bei geringer Viskosität Kein Wasser und Dampf	≥45
AWC300 (PTFE) Molybdän und Glas	20 bis 150 (0,787 bis 6)	-30 bis 149 (-20 bis 300)	Up bis 20 (4000)	0,7 (10)	Ausgezeichnet für hohe Viskosität Gut in trockenen Anwendungen und in Wasser	≥55
AWC400 (PTFE) Kohle und Grafit					Ausgezeichnet in Wasser Gut in trockenen Anwendungen und bei niedriger Viskosität	≥55
AWC510 (PTFE) Mineral (FDA-gelistet)					Ausgezeichnet für trockene Anwendungen Gut für Wasser und Dampf Keine Flüssigkeiten auf Erdölbasis	≥45

Die Leistung hängt von den vorliegenden Bedingungen ab, einschließlich Härte der Welle, Oberflächenrauhigkeit der Welle, Werkstoff, Schmierung, Temperatur und Druck.

PRODUKTPROFILE:

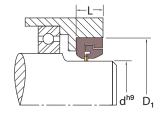
- Hochleistungs-Lippendichtungen verhindern das Eindringen von Verunreinigungen in das Gehäuse
- Mechanisch geformte
 Designs sorgen für optimale
 Dichtkraft
- Die Dichtungen werden in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt
- Statische O-Ring-Dichtung verhindert Rotation und ermöglicht einfache Montage
- Einzigartige Werkstoffe gewährleisten werksweiten Einsatz

Abwickeln einer Bestellung:

Produktprofil:
Werkstoff:
Wellendurchmesser (d):
Bohrungsdurchmesser (D ₁):
Nutentiefe (L):

Lager- und Getriebeschutz 33K

Modulare, geteilte Dichtungen für Lager- und Getriebeschutz


Der geteilte Dichtungsring 33K von Chesterton® (Patent angemeldet) eliminiert den Bedarf und die Kosten für Anlagendemontage und verbessert die Dichtungsleistung von herkömmlichen Lippendichtungen. Das innovative geteilte Design verhindert das Eindringen externer Verunreinigungen in das Gehäuse und bietet ausgezeichneten Dienst in Lager- und Getriebeanwendungen.

Die 33K wird in einem flexiblen Fertigungsverfahren in beliebigen Größen hergestellt. Die Dichtung kann in beiden Richtungen eingebaut werden, wodurch der Endbenutzer die Dichtungsringe weg von vorhandenen Schadstellen auf der Welle platzieren kann.

Die Dichtung wird in zwei unterschiedlichen Werkstoffkombinationen geliefert. Das modulare Gehäuse besteht aus abriebbeständigem Thermoset-Polyurethan, das Vorspannung aufnimmt und einfach in der Anlage montiert werden kann. Die Dichtungsflächen bestehen aus einem hochwertigen Werkstoff mit PTFE-Verstärkung, der speziell für Dichtungseinsatz entwickelt wurde.

SPEZIFIKATIONEN						\bigcirc
Werkstoff (Adapter/Dichtungsringe)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Geschwin- digkeit m/s (ft/min)	Druck bar (psi)	Empfohlener Einsatz	Gleit- fläche (Rockwell C
AWC800-Adapter (EU)						
AWC100 (PTFE) Polyimid	25 bis 610 (1 bis 24)	85 (185)	12,7 (2.500)	0,07 (1)	Ausgezeichnet für trockene Anwendungen Ausgezeichnet bei geringer Viskosität	≥45
AWC300 (PTFE) Molybdän und Glas	25 bis 610 (1 bis 24)	85 (185)	12,7 (2.500)	0,07 (1)	Ausgezeichnet für hohe Viskosität Gut in trockenen Anwendungen und Wasser	≥55
AWC400 (PTFE) Kohle und Grafit	25 bis 610 (1 bis 24)	85 (185)	12,7 (2.500)	0,07 (1)	Ausgezeichnet in Wasser Gut in trockenen Anwendungen und bei niedriger Viskosität	≥55z
AWC860-Adapter (EU)						
AWC100 (PTFE) Polyimid	25 bis 457 (1 bis 18)	121 (250)	12,7 (2.500)	0,07 (1)	Ausgezeichnet in trockenen Anwendungen Ausgezeichnet bei geringer Viskosität	≥45
AWC300 (PTFE) Molybdän und Glas	25 bis 457 (1 bis 18)	121 (250)	12,7 (2.500)	0,07 (1)	Ausgezeichnet für hohe Viskosität Gut in trockenen Anwendungen und in Wassei	≥55
AWC400 (PTFE) Kohle und Grafit	25 bis 457 (1 bis 18)	121 (250)	12,7 (2.500)	0,07 (1)	Ausgezeichnet in Wasser Gut in trockenen Anwendungen und bei niedriger Viskosität	≥55

Die Leistung hängt von den vorliegenden Bedingungen ab, einschließlich Härte der Welle, Oberflächenrauhigkeit der Welle, Werkstoff, Schmierung, Temperatur und Druck.

PRODUKTPROFILE:

SCHNELL

Das geteilte Design (Patent angemeldet) eliminiert den Bedarf für Anlagendemontage.

EINFACH

Modulare Bauweise erleichtert den Einbau in die Anlage.

ZUVERLÄSSIG

Hat sich herkömmlichen Lippendichtungen gegenüber als überlegen erwiesen.

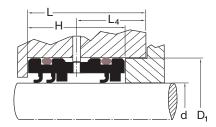
- Flexibles Design, Anbringung der Dichtungsringe entfernt von vorhandenen Wellenschäden
- Große Abmessungen erhältlich, kosteneffektive Alternativlösung zur Anlagendemontage

Abwickeln	einer	Bestel	lung:
-----------	-------	---------------	-------

Produktprofil:
Werkstoff:
Wellendurchmesser (d):
Bohrungsdurchmesser (D ₁):
Nutentiefe (L):

Viskose Flüssigkeiten und Pulver

30KC


Cartridge-Design für Pulver und viskose Flüssigkeiten

Chesterton® Cartridge-Polymerdichtungen 30KC sind für dynamische rotierende Dichtungsanwendungen konzipiert. In diesem Cartridge-Design werden mit PTFE verstärkte Hochleistungswerkstoffe eingesetzt, die den hohen Scherkräften, der Reibungswärme und den Reibkräften standhalten, die beim Pumpen von hochviskosen Produkten und Pulvern auftreten.

Die PTFE-verstärkten Hochleistungswerkstoffe der 30KC und die einzigartige Dichtungskonstruktion sorgen für ausgezeichnete Flüssigkeitsverträglichkeit und Betriebseigenschaften. Alle technischen Cartridge-Dichtungen werden auf exakte Anlagenabmessungen produziert und eliminieren den Bedarf an Anlagenmodifizierungen.

Die 30KC ist mit einem Dichtungselement an der Innenseite, einem Dichtungselement an der Außenseite und eingebauten Spülanschlüssen versehen. Die innere Lippe dichtet die Prozessflüssigkeit ab, die äußere Lippe dichtet die Sperrflüssigkeit ab und die Spülanschlüsse ermöglichen die Spülung. Das vielseitige Cartridge-Design ist extrem beständig und vermeidet Adhäsion zwischen den Dichtungsflächen und der Welle auf Grund der Werkstoffwahl und den Gleiteigenschaften bei Trockenlauf.

SPEZIFIKATION	EN						\bigcirc
*Werkstoff (Kombinatio) (Adapter/ Dichtungsringe)	Größenbereich mm (Zoll)	Temperatur °C (°F)	Geschwin- digkeit m/s (ft/min)	Druck bar (psi)	Gleit- fläche (Rock- well C)	Ober- flächen- güte µm (µ Zoll)	** Empfohlener Einsatz
AWC100 (PTFE) Polyimid	25 bis 200 (1,000 bis 7,875)	-30 bis 150 (-20 bis 300)	bis zu 5 (984)	bis 10 (150)	45	Dynamisch 0,2 bis 0,4 (8 bis 16)	Ausgezeichnet in trockenen Anwendungen Ausgezeichnet für niedrige Viskosität (<2.000 cp) Pulver, Öl, Harze, Klebstoffe, Lacke Kein Wasser oder Dampf
AWC300 (PTFE) Molybdän und Glas					55		Ausgazaichnat für haha Vickosität
AWC400 (PTFE) Kohle und Grafit					55	Statisch 0,4 bis 0,8 (16 bis 32)	Ausgezeichnet in Wasser oder Dampf Gut in trockenen Anwendungen und bei niedriger Viskosität Pulver, Asphalt, Ton, Schlämme
AWC510 Mineral (FDA-gelistet)					45		Ausgezeichnet in trockenen Anwendungen Gut in Wasser oder Dampf Schokolade und Sirup Keine Flüssigkeiten auf Erdölbasis

PRODUKTPROFILE:

- Bessere Leistung als herkömmliche Packungen und bessere Abdichtung von hochviskosen Flüssigkeiten und Trockenpulvern
- Weniger Stillstandszeit; einfach montierbares, vielseitiges Cartridge-Design
- Verbesserte Leistung von komprimierten Dichtungsringen, eigens entwickelte PTFE-Werkstoffe
- Kundenspezifisch konzipierte Cartridges, abgestimmt auf die Anlagenabmessungen

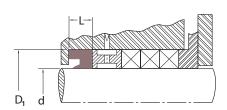
A	bwi	icke	ln	eine	r B	est	tell	lung:	
---	-----	------	----	------	-----	-----	------	-------	--

Produktprofil:
Werkstoff:
Wellendurchmesser (d):
Durchmesser Dichtraum (D ₁):
Nutentiefe (L):
Abstand zu Spülanschluss (L ₄):
Cartridge-Höhe (H):

Drosselbuchsen 14K

Robuste Drosselbuchse für rotierende Anlagen

14K Drosselbuchsen von Chesterton® dienen zum Einsatz in rotierenden Anwendungen zur Bildung einer Barriere zwischen der Dichtung im Dichtraum oder dem Pumpenlaufradgehäuse und der Flüssigkeit im Mischtank. Die erzeugte Drosselung verringert die erforderliche Spülflüssigkeitsmenge und verhindert, dass schleifend wirkende Teilchen in den Dichtraum gelangen.


14K Drosselbuchsen werden in unserem einzigartigen Bearbeitungsverfahren hergestellt, das Rüstkosten für neue Größen eliminiert. Jede Buchse wird einzeln hergestellt und bietet ausgezeichnete Leistung beim Einsatz in Pumpen, Rühr- und Mischwerken, Refinern und anderen Anlagen.

Die konische Lippe der 14K passt sich an Anlagenexzentritäten an und minimiert den ringförmigen Spalt um drehende Wellen, wodurch der kleinstmögliche freie Strömungsquerschnitt zur Kontrolle der Spülflüssigkeitsmenge erzeugt wird. Ein zweiter vorteilhafter Effekt des höheren Druckabfalls in der 14K ist die einheitliche Spülung der Welle, was entscheidend dazu beiträgt, dass keine Teilchen in die Dichtraum-Umgebung gelangen können.

SPEZIFIKATIONEN			\mathfrak{D}
Werkstoff (Bezeichnung)	Größenbereich mm (Zoll)	Temperatur °C (°F)	pH-Wertebereich
AWC520 (PTFE)	25 bis 355 (1 bis 14)	bis zu 200 (400)	0-14
AWC800 (EU)	25 bis 355 (1 bis 14)	bis zu 85 (185)	4-10

<u>Strömungsmengen — ungefähre Werte für Wasser, berechnet mit den folgenden Formeln</u>

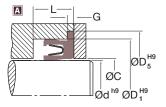
Strömungsmenge, l/min = ([0,115 x \triangle Druck, bar] + [0,064]) x Wellendurchmesser, mm Strömungsmenge, gal/min = ([0,053 x \triangle Druck, psi] + [0,43]) x Wellendurchmesser, Zoll

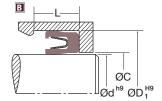
- Geteilte Bauweise vereinfacht die Montage
- Verhindert, dass Teilchen in den Dichtraum gelangen können, verlängert die Standzeit der Packungsringe und Dichtungen
- Konische Lippe, regelt den Flüssigkeitsstrom und erhöht den Pumpenwirkungsgrad
- Zwei verfügbare Werkstoffe, werksweiter Einsatz
- Für Pumpen aller Arten, Rühr- und Mischwerke und Refiner

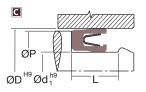
PRODUKTPROFILE:

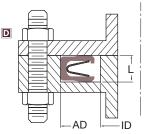
Abwickeln einer Bestellung:

Serie - Mit Mäanderfedern


Mit Mäanderfeder vorgespannte Dichtungen, stark dynamische Anwendungen


Mit Mäanderfeder vorgespannte Dichtungen werden in erster Linie in stark dynamischen Anwendungen für rotierende Anlagen und Hubanlagen eingesetzt, da die Federausführung eine starke Durchbiegung bei minimaler Belastung ermöglicht. Es ist die beliebteste Serie federvorgespannter Dichtungskonstruktionen, da ihre einzigartigen Eigenschaften die Standzeit von Dichtung und Maschinenteilen erhöhen.


Die 100 Serie ist in drei einzigartigen Mantelwerkstoffen erhältlich, damit sie in verschiedensten Anwendungen eingesetzt werden kann. Jeder Dichtungsmantel wird in Kombination mit einer Hochleistungs-Mäanderfeder aus Edelstahl eingesetzt, um die Dichtkraft direkt auf die Gleitfläche zu übertragen.


SPEZIFIKATIONEN		
Werkstoff	Größenbereich	Temperatur
(Bezeichnung)	mm (Zoll)	°C (°F)
AWC400 (PTFE)	1,2 bis 2.032	-156 bis 204
Kohle und Grafit	(0,050 bis 80)	(-250 bis 400)
AWC630	1,2 bis 254	-73 bis 204
PEEK®	(0,050 bis 10)	(-100 bis 400)
AWC610	1,2 bis 2.032	-253 bis 82
UHMWPE	(0,050 bis 80+)	(-425 bis 180)

PEEK® ist eine Schutzmarke von Victrex, plc.

PRODUKTPROFILE:

- Stark dynamische Anwendungen, werksweiter Einsatz
- Einseitig gerichtete Konstruktion, verfügbar als Kolben-, Stangen-, Flanschdichtung oder statische Dichtung
- Einzelpunktprofil, hohe *Dichtwirkung bei minimaler* Reibungskraft
- Alle Dichtungen werden auf Bestellung angefertigt; keine Anlagenmodifizierungen erforderlich
- Kundenspezifische Designs und Werkstoffe auf Anfrage erhältlich

Abwickeln einer Bestellung:	Α
Produktprofil:	
Werkstoff:	
Wellendurchmesser (d):	
Bohrungsdurchmesser (D ₁):	
Flanschnutentiefe (G):	

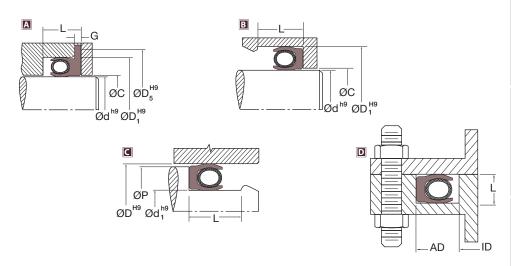
Abwickeln einer Bestellung:	В
Produktprofil:	
Werkstoff:	
Wellendurchmesser (d):	
Bohrungsdurchmesser (D ₁):	
Nutentiefe (L):	

Abwickeln einer Bestellung:
Produktprofil:
Werkstoff:
Durchmesser Kolbennut (d ₁):
Bohrungsdurchmesser (D):
Nutentiefe (L):

Abwickeln einer Bestellung:
Produktprofil:
Innendurchmesser (ID):
Außendurchmesser (AD):
Nutentiefe (L):

200 Serie -

Design mit elliptische Schraubenfedern


Mit elliptische Schraubenfedern vorgespannte Dichtungen nehmen große Toleranzen oder Fehlausrichtungen auf

Mit elliptische Schraubenfedern vorgespannte Dichtungen werden häufig in rotierenden und statischen Anwendungen sowie Hubanwendungen eingesetzt, bei denen Bauteiltoleranzen relativ groß sind oder eine Miniaturdichtung erforderlich ist. Die Konstruktion mit elliptische Schraubenfedern ermöglicht minimale Durchbiegung und beaufschlägt moderate Last.

Die 200 Serie ist in drei einzigartigen Mantelwerkstoffen erhältlich, damit sie in verschiedensten Anwendungen eingesetzt werden kann. Jeder Dichtungsmantel wird in Kombination mit einer Hochleistungs-elliptische Schraubenfedern aus Edelstahl eingesetzt, um die Dichtkraft direkt auf die Gleitfläche zu übertragen.

SPEZIFIKATIONEN	•	
Werkstoff	Größenbereich	Temperatur
(Bezeichnung)	mm (Zoll)	°C (°F)
AWC400 (PTFE)	1,2 bis 2.032	-156 bis 204
Kohle und Grafit	(0,050 bis 80)	(-250 bis 400)
AWC630	1,2 bis 254	-73 bis 204
PEEK®	(0,050 bis 10)	(-100 bis 400)
AWC610	1,2 bis 2.032	-253 bis 82
UHMWPE	(0,050 bis 80+)	(-425 bis 180)

PEEK® ist eine Schutzmarke von Victrex, plc.

PRODUKTPROFILE:

- Einseitig gerichtete Konstruktion, nimmt große Toleranzen oder Fehlausrichtungen auf
- Design mit elliptischer Schraubenfeder; hohe Belastbarkeit und wenig Durchbiegung
- Miniaturprofil , für kleine Durchmesser
- Alle Dichtungen werden auf Bestellung angefertigt; keine Anlagenmodifizierungen erforderlich
- Kundenspezifische Designs und Werkstoffe auf Anfrage erhältlich

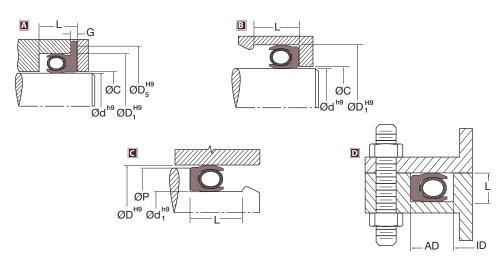
Abwickeln einer Bestellung:	
Produktprofil:	
Werkstoff:	
Wellendurchmesser (d):	
Bohrungsdurchmesser (D ₁):	
Flanschnutentiefe (G):	
Abwickeln einer Bestellung:	
Produktprofil:	
Werkstoff:	
Wellendurchmesser (d):	
Bohrungsdurchmesser (D ₁):	
Nutentiefe (L):	
Abwickeln einer Bestellung:	
Produktprofil:	
Werkstoff:	
Durchmesser Kolbennut (d ₁):	
Bohrungsdurchmesser (D):	

Abwickeln einer Bestellung:	D
Produktprofil:	
Innendurchmesser (ID):	
Außendurchmesser (AD):	
Nutentiefe (L):	
• • • • • • • • • • • • • • • • • • • •	

Nutentiefe (L):

300_{Serie} -

Design mit Stützwendelfedern


Mit Stützwendelfeder gespannte Dichtungen für langsame und statische Anwendungen

Mit Stützwendelfeder gespannte Dichtungen werden in erster Linie in statischen Anwendungen, bei langsamen Drehzahlen, extrem tiefen Temperaturen und/oder seltenen dynamischen Zuständen eingesetzt, bei denen Reibung und Verschleiß zweitrangig sind. Die Federausführung bietet ausgezeichnete Belastbarkeit bei minimaler Durchbiegung.

Die 300 Serie ist in drei einzigartigen Mantelwerkstoffen erhältlich, damit sie in verschiedensten Anwendungen eingesetzt werden kann. Jeder Dichtungsmantel wird in Kombination mit einer Hochleistungs-Stützwendelfeder aus Edelstahl eingesetzt, um die Dichtkraft direkt auf die Gleitfläche zu übertragen.

SPEZIFIKATIONEN		
Werkstoff	Größenbereich	up bis Temperatur
(Bezeichnung)	mm (Zoll)	°C (°F)
AWC400 (PTFE)	1,2 bis 2.032	-156 bis 204
Kohle und Grafit	(0,050 bis 80)	(-250 bis 400)
AWC630	1,2 bis 254	-73 bis 204
PEEK®	(0,050 bis 10)	(-100 bis 400)
AWC610	1,2 bis 2.032	-253 bis 82
UHMWPE	(0,050 bis 80+)	(-425 bis 180)

PEEK® ist eine Schutzmarke von Victrex, plc.

PRODUKTPROFILE:

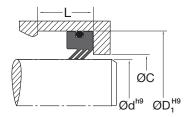
- Einseitig gerichtete
 Konstruktion für langsame
 und statische Anwendungen
- Design mit Zylinderschraubenfeder: hohe Belastbarkeit und wenig Durchbiegung
- Konzentriert auf Belastung, wenn Reibung und
 Verschleiß zweitrangig sind
- Alle Dichtungen werden auf Bestellung angefertigt; keine Anlagenmodifizierungen erforderlich
- Kundenspezifische Designs und Werkstoffe auf Anfrage erhältlich

Abwickeln einer Bestellung:	Α
Produktprofil:	
Werkstoff:	
Wellendurchmesser (d):	
Bohrungsdurchmesser (D ₁):	
Flanschnutentiefe (G):	

Abwickeln einer Bestellung:	В
Produktprofil:	
Werkstoff:	
Wellendurchmesser (d):	
Bohrungsdurchmesser (D ₁):	
Nutentiefe (L):	

Abwickeln einer Bestellung:	C
Produktprofil:	
Werkstoff:	
Durchmesser Kolbennut (d ₁):	
Bohrungsdurchmesser (D):	
Nutentiefe (L):	

Abwickeln einer Bestellung:
Produktprofil:
Innendurchmesser (ID):
Außendurchmesser (AD):
Nutentiefe (L):


400 Serie - Rotierende Dichtungen

Hochleistungs-Mehrzweckdichtungsringe – rotierend

Hochleistungs-Mehrzweckdichtungsringe der 400 Serie von Chesterton® sind für den Einsatz in dynamischen Anwendungen vorgesehen. Die einzigartige Ausführung der Lippendichtung wird mechanisch geformt und erzeugt optimale Dichtkraft. Die Werkstoffe in Kombination mit der ausgezeichneten Dichtungskonstruktion ergeben eine ausgezeichnete Verträglichkeit mit Flüssigkeiten und erstklassige Leistung.

Die 400 Serie ist in drei einzigartigen Mantelwerkstoffen erhältlich, damit sie in verschiedensten Anwendungen eingesetzt werden kann. Einige Ausführungen sind mit Federn versehen, um die Belastbarkeit oder Stützwirkung zu verbessern.

SPEZIFIKATIONEN		\odot
Werkstoff	Größenbereich	Temperatur
(Bezeichnung)	mm (Zoll)	°C (°F)
AWC400 (PTFE)	1,2 bis 2.032	-156 bis 204
Kohle und Grafit	(0,050 bis 80)	(-250 bis 400)
AWC610	1,2 bis 2.032	-253 bis 82
UHMWPE	(0,050 bis 80+)	(-425 bis 180)

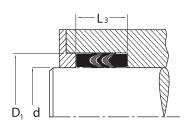
PRODUKTPROFILE:

- Einseitig gerichtete Konstruktion, speziell für den Einsatz bei hohen Drehgeschwindigkeiten
- Mehrzweck-Dichtungsringe mit Lippen für werksweiten Einsatz
- Alle Dichtungen werden auf Bestellung angefertigt; keine Anlagenmodifizierungen erforderlich
- Kundenspezifische Profile sind erhältlich

Abwickeln einer Bestellung:

Produktprofil:
Werkstoff:
Wellendurchmesser (d):
Bohrungsdurchmesser (D₁):
Nutentiefe (L):

500 Serie - V-Profil-Dachmanschetten


Hochleistungs-Mehrzweckdachmanschetten

Die Hochleistungs-Mehrzweckdachmanschetten sind speziell für Maschinen mit tiefen Dichträumen vorgesehen. Diese Manschetten werden sowohl in rotierenden als auch Hubanwendungen eingesetzt und sind je nach Anwendungsanforderung in ungeteilter und geteilter Ausführung erhältlich.

Die 500 Serie ist in drei einzigartigen Mantelwerkstoffen erhältlich, damit sie in verschiedensten Anwendungen eingesetzt werden kann. Einige Ausführungen sind mit einer Edelstahlfeder oder einem Führungsring für zusätzliche Belastbarkeit oder Stabilität versehen.

SPEZIFIKATIONEN			\supset
Werkstoff	Größenbereich	Temperatur	
(Bezeichnung)	mm (Zoll)	°C (°F)	
AWC400 (PTFE)	1,2 bis 2.032	-156 bis 204	
Kohle und Grafit	(0,050 bis 80)	(-250 bis 400)	
AWC630	1,2 bis 254	-73 bis 204	
PEEK®	(0,050 bis 10)	(-100 bis 400)	
AWC610	1,2 bis 2.032	-253 bis 82	
UHMWPE	(0,050 bis 80+)	(-425 bis 180)	

PEEK® ist eine Schutzmarke von Victrex, plc.

PRODUKTPROFILE:

- Einseitig gerichtete Konstruktion speziell für V-Profil-Dachmanschetten
- Mehrzweckdachmanschetten, werksweiter Einsatz
- Alle Dichtungen werden auf Bestellung angefertigt; keine Anlagenmodifizierungen erforderlich
- Kundenspezifische Profile sind erhältlich
- V-Ring-Dachmanschetten sind für Maschinen mit tiefen Dichträumen geeignet

Ab	wi	cke	ln e	iner	Best	tell	lung:	:
_		1.	C-1					

TECHNIK

TECHNISCHE RICHTLINIEN

Produktprofile und -Beschreibungen

Die Auswahl der richtigen Konstruktion für Ihre Anwendung hilft Ihnen optimale Leistung zu erzielen. Die Produktprofiltabelle bietet dem Benutzer grundlegende Richtlinien für die einzelnen Profilbezeichnungen und den empfohlenen Einsatzbereich. Diese Profile entsprechen den Profilen, die im Rahmen unseres SpeedSeal® Programms erhältlich sind.

- · Hydraulik- und Pneumatikdichtungen
- · Rotierende und federvorgespannte Dichtungen

Konstruktionsrichtlinien

Die Konstruktion der Anlagen internationalen Normen gemäß hilft sicherzustellen, dass maximale Dichtwirkung erzielt wird. Chesterton-Produkte werden in unterschiedlichsten Anwendungen eingesetzt, einschließlich hydraulischen, pneumatischen, rotierenden, oszillierenden und statischen Anwendungen sowie Hubanwendungen. Durch unsere langjährige Erfahrung sind unsere Konstruktionen ausgereift und maximieren die Dichtungswirkung auf Basis der vorgelegten Richtlinien.

- · Richtlinien für Bauteile
- ISO-Passungen und -Toleranzen

Werkstoffmatrix

Die Auswahl des korrekten Werkstoffs für die gewählte Dichtungskonstruktion bietet die beste Gelegenheit, die Dichtungsleistung zu optimieren. Chesterton bietet ein umfangreiches Werkstoff-Portfolio mit mehr als 60 Produkten, von denen viele kundenspezifisch gemischt werden können, um die speziellen Endbenutzeranforderungen zu erfüllen. In diesem Abschnitt werden unsere populärsten Werkstoffe beschrieben und durch zugehörige Spezifikationen für Polymerdichtungen ergänzt.

- Allgemeiner Einsatz
- Eigenschaften

Chemische Verträglichkeit

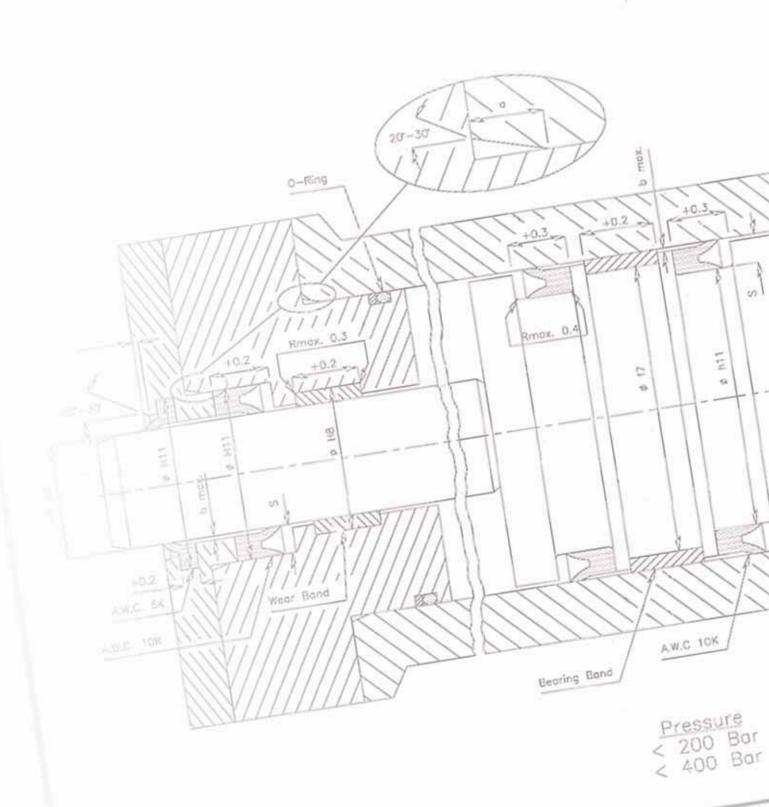
Chesterton-Produkte werden in verschiedenen hydraulischen, pneumatischen und rotierenden Anwendungen eingesetzt. Da Flüssigkeiten von Anwendung zu Anwendung stark unterschiedlich sein können, hat die Auswahl eines geeigneten Dichtungswerkstoffs einen großen Einfluss auf die Leistung der Dichtung. Die Tabelle der chemischen Verträglichkeit ist eine Richtlinie zum Identifizieren von geeigneten Werkstoffen für Ihre Anwendung.

- Flüssigkeitsliste
- Werkstoffrichtlinie

Anleitung zur Fehlersuche

Diese Anleitung dient zu Bezugnahme, wenn Zylinder oder Pressen neu gepackt, überholt oder neu konstruiert werden. Dieser Abschnitt ist auf praktischen Erfahrungen aufgebaut und enthält Bilder und Beispiele von empfohlenen Dichtungslösungen. Der Schlüssel zur Leistungsverbesserung in zukünftigen Anwendungen ist das Verständnis, wie und warum Dichtungen vorzeitig versagen.

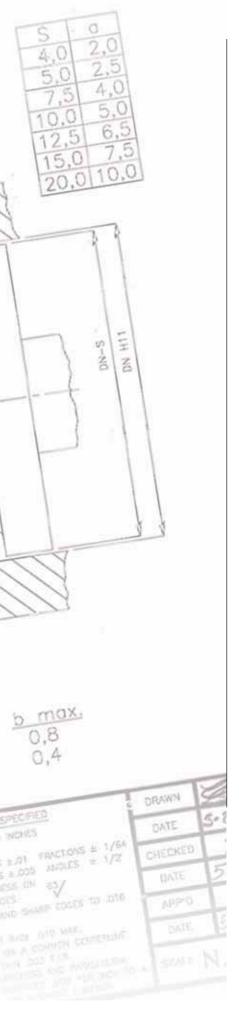
- · Wahrscheinliche Ursachen
- · Mögliche Lösungen



Formular zur Anforderung technischer Maßnahmen

Das Formular zur Anforderung technischer Maßnahmen von Chesterton dient zum Erfassen aller relevanten Details einer bestimmten Anwendung. Mit diesen Informationen können unser technisches Unterstützungsteam, Spezialisten und Ingenieure Ihre Anwendung besser verstehen und die Optionen bewerten, die für Sie verfügbar sind.

- · Anwendungsdetails
- Abmessungen der Bauteile



Dynamic: Ra=0,4 µm [16 µinch] Statio: Ro=1,0 µm [40 µinch] UNLESS OTHERWISE

1. DWENSONS ARE IN

2. YOUERRICES ON 2 PLACE DECMALS S PLACE DECEMBE

3. SURFACE ROLLDAS

TECHNISCHE RICHTLINIEN

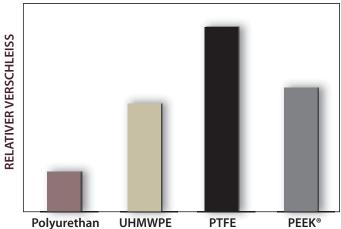
A.W. Chesterton Company ist ein weltweit führender Hersteller und Anbieter der leistungsstärksten Dichtungsvorrichtungen. Die Kombination unserer einzigartigen Produkte, der Unterstützung durch unser technisches Personal und die Expertise unserer technischen Fachleute führt zu erhöhter Zuverlässigkeit und jahrelangem problemlosen Einsatz.

In diesem Abschnitt finden Sie technische Richtlinien zur Unterstützung der von Chesterton angebotenen Produkte.

Abschnitt III

- Produktprofile und -Beschreibungen
- Konstruktionsrichtlinien
- Werkstoffmatrix
- Flüssigkeitsverträglichkeit
- Anleitung zur Fehlersuche
- Formular zur Anforderung technischer Maßnahmen

Technik Einleitung

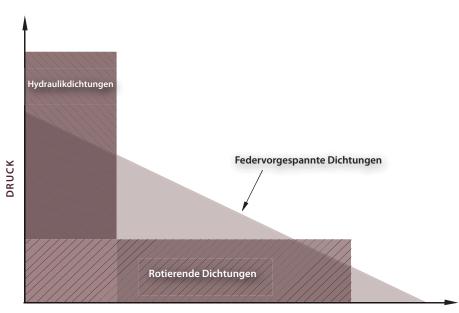

Die Auswahl einer geeigneten Dichtung für eine bestimmte Anwendung wird im Allgemeinen durch die Betriebsparameter wie Druck, Geschwindigkeit, Temperatur, Flüssigkeitsverträglichkeit, verfügbarer Raum, Standzeit, zulässige Leckage und Kosten bestimmt. In vielen Fällen werden spezielle Dichtungen für bestimmte Anwendungen benutzt, wie dies in der Vergangenheit so gemacht wurde. Das ist der vorherige und wiederholte Einsatz einer Dichtung in einer Anwendung über viele Jahre.

Eine Dichtung kann allgemein als Produkt definiert werden, das die Bewegung einer Flüssigkeit zwischen benachbarten Teilen von Anlagen oder zur Umwelt regelt und damit verhindert. Im Grunde können Dichtungen in Dichtungen *mit* und *ohne Kontakt* gegliedert werden. Kontaktlose Dichtungen werden in Anwendungen vorgeschrieben, bei denen keine Druckdifferenz vorhanden ist und die Standzeit auf Grund des Fehlens einer dynamischen Gleitfläche unbegrenzt ist.

Die weiter verbreiteten Dichtungsprodukte nutzen den Übergang zwischen zwei Anlagenoberflächen zur direkten Abdichtung. Diese Dichtungen können in zwei Kategorien unterteilt werden: *statisch* und *dynamisch*. Obwohl der Begriff dies ausschließt, treten bei statischen Dichtungen auch Bewegungen auf, jedoch in sehr kleinem Ausmaß. Beispiele sind die Expansion und Schrumpfung von Anlagen oder Druckzyklen im System, die einen Einfluss auf die Dichtung selbst haben. Statische Dichtungen stellen die Mehrzahl aller Dichtungen dar: O-Ringe, Dichtungen, Dichtmittel und Metalldichtungen. Dynamische Dichtungen stellen die größere Herausforderung der beiden Kategorien. Dynamische Dichtungsanwendungen sind Anordnungen, bei denen Systemkomponenten mit relativ schnellen Hub- oder Drehgeschwindigkeiten bewegt werden. In solchen Situationen müssen mehr Betriebsparameter berücksichtigt werden, damit eine geeignete Dichtungslösung gefunden werden kann.

Die Hauptkategorien von dynamischen Dichtungsvorrichtungen sind Dichtungsringe, Gleitringdichtungen und Dichtungen auf Polymerbasis. Unter den verschiedenen Parametern, die zur Bestimmung des geeigneten Werkstofftyps und der Dichtungskonstruktion benutzt werden, sind *Verschleiß*- und *Druck-/Geschwindigkeitseigenschaften* (P-V).

Die Tabelle gibt die Verschleißeigenschaften einiger wichtiger Werkstoffgruppen an, die in Polymerdichtungen angewendet werden. Die niedrigeren Werte bedeuten bessere Verschleißeigenschaften oder längere Lebensdauer bezogen auf die metallischen Kontaktflächen. Beispielsweise haben Werkstoffe auf Polyurethanbasis bessere Verschleißeigenschaften als PTFE.


Obwohl dieses Diagramm Einblick in die relativen Verschleißeigenschaften bietet, haben die Werkstoffe Grenzwerte für Druck und Geschwindigkeit, denen der Werkstoff standhalten kann und noch angemessene Leistung bietet.

Ein Faktor aus Druck mal Geschwindigkeit liefert einen Bezugswert für das Belastungsausmaß, das ein Werkstoff und Dichtungskonstruktionen in der Praxis aufnehmen kann. Solche Werte beziehen sich auf die Anlagen-Betriebsparameter. Es ist praktisch sowohl den Werkstoff als auch die Dichtungskonstruktion zu berücksichtigen, um festzustellen, wer von ihnen die entsprechende Leistung erbringt. Das Diagramm unten zeigt allgemeine Bereiche nach Dichtungstyp in Bezug auf Druck und Geschwindigkeit.

Bei Polyurethan wird der Werkstoff auf Grund seiner einzigartigen Eigenschaften, die die Rückkehr in den Anfangszustand ermöglichen, gewöhnlich ohne Vorspannung (z. B. durch Federn) eingesetzt. Wie im Diagramm angegeben, werden Polyurethan-Werkstoffe gewöhnlich für niedrigere Geschwindigkeiten und höheren Druck empfohlen.

Rotierende Dichtungen werden gewöhnlich nicht mit Federn vorgespannt und können aus verschiedenen PTFE-Werkstoffen bestehen. Rotierende Dichtungen können bei schnelleren Oberflächengeschwindigkeiten mit niedrigerem Druck eingesetzt werden.

Federvorgespannte Dichtungen, die in rotierenden Anwendungen und Hubanwendungen eingesetzt werden, decken einen breiten Bereich an Druck- und Geschwindigkeitseigenschaften ab. Dazu gehören verschiedene Federtypen (z. B. Mäander-, Stützwendelfedern, elliptische Schraubenfedern) und Werkstoffe, die die Anlagen-Betriebsparameter erfüllen. Federvorgespannte Dichtungen können bei relativ hohem Druck und hohen Drehgeschwindigkeiten eingesetzt werden.

PEEK® is eine Schutzmarke von Victrex plc.

GESCHWINDIGKEIT

Abstreifer

Die Funktion eines Abstreifers ist das effektive Reinigen und Loslösen von Fremdstoffen auf einfahrenden Stangen/Kolben, um das Eindringen von Verunreinigungen zu verhindern.

5K/21K

STANDARDABSTREIFER

Die Abstreiferkonstruktion mit positivem Flankenwinkel reinigt und löst Fremdstoffe wirkungsvoll von einfahrenden Stangen/Kolben, um Riefenbildung und Systemverunreinigung zu vermeiden.

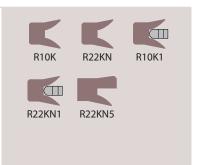
Profil	Beschreibung
W5K	Gegossener Abstreifer mit Flanschkonstruktion
W21KF	Maschinell hergestellter Abstreifer mit Flanschkonstruktion
W21KT5	Maschinell hergestellter Abstreifer für tiefere Nuten und mit besserer Stabilität
W21K	Maschinell hergestellter Abstreifer mit statischer Anschlagflansch-Konstruktion zur Eliminierung der Migration von Verunreinigungen
W21KC	Maschinell hergestellte Kombination von Abstreifer und Stangendichtung, nur für Pneumatikanwendungen
W21KC1	Maschinell hergestellte Kombination von Abstreifer und Stangendichtung mit statischem Anschlagflansch, nur für Pneumatikanwendungen
W21KCS	Maschinell hergestellte Kombination von Abstreifer und Stangendichtung mit Stufenflansch, nur für Pneumatikanwendungen
W21KH	Maschinell hergestellter Abstreifer mit Flanschkonstruktion, zum Ersatz als eine Dachmanschette
W21KM	Maschinell hergestellter Abstreifer mit einrastender Passung für spezielle Anwendungstypen
W21KR	$Maschinell\ hergestellter\ Abstreifer\ mit\ statischem\ Flanschanschlag\ und\ stabilisierendem\ R\"{u}cken$
W21KS	Maschinell hergestellter Profilabstreifer mit Stufenflansch
WCCS	Maschinell hergestellter Abstreifer mit vorgespanntem O-Ring zum Einsatz mit PTFE-Werkstoffen

5K/21K

EINGEPRESSTE ABSTREIFER

Die Konstruktion von eingepressten Abstreifern mit positivem Flankenwinkel reinigt und löst Fremdstoffe wirkungsvoll von einfahrenden Stangen/Kolben, um Riefenbildung und Systemverunreinigung zu vermeiden. Ein eingepresster Abstreifer hat eine Presspassung und wird in eine Nut in einem offenen Gehäuse eingesetzt; er benötigt auf Grund der Presspassung keine zusätzliche Sicherungsvorrichtung.

Profil	Beschreibung
CW21K	Maschinell hergestellte Doppelkomponente, eingepresster Absteifer mit Stufenflansch
CW21K1	Maschinell hergestellte Doppelkomponente, eingepresster Absteifer mit teilweisem Stufenflansch
CW21K2	Maschinell hergestellte Doppelkomponente, eingepresster Absteifer mit längerer statischer Lippe
CW21K3	Maschinell hergestellte Doppelkomponente, eingepresster Absteifer


Stangendichtungen – Nutringe

Die Funktion einer Stangendichtung ist das Austreten von Flüssigkeit entlang der dynamischen (z. B. Stange/Kolben) und statischen (Nutgrund) Fläche unter verschiedenen Betriebsbedingungen zu verhindern. Ein Nutring ist ein endloser Dichtungsring mit einem schalenähnlichen Profil.

10K / 22KN NUTRINGE

Eine einfach wirkende Stangen- oder Kolbendichtung in durchgehender Nutringkonstruktion, die während des Betriebs Verunreinigungen von der Gleitfläche wischt. Das Lippenprofil mit positivem Flankenwinkel bietet optimale radiale Dichtwirkung bei minimalem Reibungswiderstand. Konstruiert für den Einsatz in Hydraulik- und Pneumatikanwendungen.

Profil	Beschreibung
R10K	Gegossene Stangendichtung zum Einsatz in Hydraulik- oder Pneumatikzylindern und -pressen
R22KN	MaschinellhergestellteStangendichtungzumEinsatzinHydraulik-oderPneumatikzylindernund-pressen
R10K1	Gegossene Stangendichtung mit Distanzring für Unterdrucksituationen
R22KN1	Maschinell hergestellte Stangendichtung mit Distanzring für Unterdrucksituationen
R22KN5	Maschinell hergestellte Stangendichtung mit größerer statischer Lippe für zusätzliche Stabilität und Unterdruckbeständigkeit

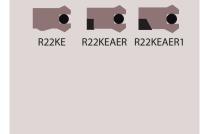
6K NUTRING

Einfach wirkendes, durchgehendes Nutring-Design mit einer Lippe mit positivem Flankenwinkel, das während des Betriebs Verunreinigungen von der Passfläche wischt. Die robuste, auf Gummi basierende Konstruktion eignet sich ideal für ältere, abgenutzte Hydraulikzylinder und -pressen, da sie sich an Oberflächenunregelmäßigkeiten anpasst und Leckage wirkungsvoll verhindert.

Profil	Beschreibung
R6K	Gegossene Stangendichtung zum Einsatz in älteren, abgenutzten Anlagen

22K NUTRINGE

Eine einfach wirkende Stangen- oder Kolbendichtung für Hydraulikanwendungen in durchgehendem Design mit einer speziellen Lippengeometrie, die die Lippenvorspannung erhöht und über den gesamten Betriebsbereich Null Leckage bietet. Die robuste, statische Lippe stabilisiert die Dichtung und verhindert Rollen, während die negativ angestellte Flanke den Einbau erleichtert.


Profil	Beschreibung
R22K	Maschinell hergestellte Stangendichtung für Hydraulikzylinder und -pressen
R22KAER	Maschinell hergestellte Stangendichtung mit einem aufgesetzten, rechteckigen Anti-Extrusionsring für Anwendungen mit übermäßigem Spiel und Druckspitzen
R22KAER1	Maschinell hergestellte Stangendichtung mit kundenspezifischem Anti-Extrusionsring für Anwendungen mit übermäßigem Spiel und Druckspitzen

22KE NUTRINGE

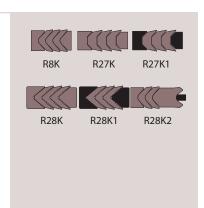
Eine einfach wirkende Stangendichtung mit durchgehendem Design mit integriertem O-Ring, der die Vorspannung für Niederdruckeinsatz erhöht und hohe Stoßlasten bei Hydraulikanwendungen aufnehmen kann. Der O-Ring spannt die Dichtung, wodurch diese bei fehlendem Systemdruck eine stärkere Vorspannkraft ausüben kann.

Profil	Beschreibung
R22KE	Maschinell hergestellte Stangendichtung für Hydraulikzylinder und -pressen
R22KEAER	Maschinell hergestellte Stangendichtung mit einem augesetzten, rechteckigen Anti-Extrusionsring für Anwendungen mit übermäßigem Spiel und Druckspitzen
R22KEAER1	Maschinell hergestellte Stangendichtung mit aufgesetztem Anti-Extrusionsring für Anwendungen mit übermäßigem Spiel und Druckspitzen

23K NUTRINGE

Eine einfach wirkende Stangen- oder Kolbendichtung mit durchgehendem Design und einer einzigartigen dynamischen Lippengeometrie, die optimale Dichtkraft für Pneumatikanwendungen erzeugt.

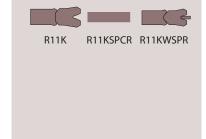
Profil	Beschreibung
R23K	Maschinell hergestellte Stangendichtung mit durchgehendem Design


Stangendichtungen – Dachmanschetten

Dachmanschetten werden am häufigsten zur Sicherstellung von einfachem Einbau auf Grund der geteilten Bauweise eingesetzt; in einigen Fällen werden jedoch Endloskonstruktionen bevorzugt. Diese Dachmanschetten verfügen über Dichtungsringe, die innerhalb eines oberen/äußeren und unteren/inneren Adapters eingesetzt werden. Die Anzahl der Dichtungsringe, die in einem Satz benutzt werden, wird vom Systemdruck vorgeschrieben. Der innere Adapter sorgt für die Ausrichtung der Dichtungsringe und hilft die Dachmanschette unter Systemdruck vorzuspannen. Der äußere Adapter sichert die Ausrichtung und Führung der Dachmanschette und gleicht gleichzeitig das Extrudieren in große Anlagenhohlräume aus.

8K/27K DACHMANSCHETTEN

Die druckaktivierten Dachmanschetten sind zum Einsatz in Hydraulikanwendungen vorgesehen. Der einfach wirkende positive Flankenwinkel erzeugt Kontakt in der Mitte der Dachmanschette, um eine gleichmäßige Belastung, längere Dichtungsstandzeit und minimalen Deckeldruck sicherzustellen. Die meisten Manschetten sind in geteilter oder endloser Ausführung erhältlich.


	Profil	Beschreibung
Ī	R8K	Gegossene, einfach wirkende symmetrische Dachmanschette, geteilt oder endlos erhältlich
	R27K	Maschinell hergestellte, einfach wirkende symmetrische Dachmanschette, geteilt oder endlos erhältlich
	R27K1	Maschinell hergestellte, einfach wirkende symmetrische Dachmanschette mit kundenspezifischen Adaptern für große Freiräume
	R28K	Maschinell hergestellte, einfach wirkende symmetrische Dachmanschette zum Ersatz typischer Industriemanschetten
	R28K1	Maschinell hergestellte, einfach wirkende symmetrische Dachmanschette mit Adaptern aus technischen Kunststoffen für bessere Führung und Widerstand gegen Extrusion
	R28K2	Kundenspezifisch maschinell hergestellte, einfach wirkende symmetrische Dachmanschette mit inneren Adaptern aus technischen Kunststoffen für bessere Führung und Widerstand gegen Extrusion

11K DACHMANSCHETTEN

Die einfach wirkende, geteilte Doppeldichtung hat eine Lippe mit negativem Flankenwinkel, um die Wirkung im Betrieb zu optimieren und gleichzeitig den Einbau in den Dichtraum zu vereinfachen. Der unterste Ring ist die Primärmanschette, während der oberste Ring als Anti-Extrusionsring und Sekundärdichtung fungiert sowie bessere Führung des Dichtungsrings bietet. Die Manschette ist in verschiedenen Werkstoffkombinationen sowie geteilt und ungeteilt erhältlich.

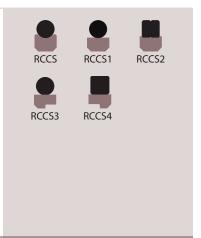
Profil	Beschreibung
R11K	Gegossene oder maschinell hergestellte symmetrische Dichtung für Hydraulikanwendungen
R11KSPCR	Gegossener oder maschinell hergestellter, kundenspezifischer Distanzring mit Dichtung, zum Ausgleich von Unterdruckbedingungen, seitlicher Belastung oder Stoßbelastung
R11KWSPR	Gegossener oder maschinell hergestellter, einfach wirkender zweiteiliger Zweiringdichtsatz mit einem kunden spezifischen istanzring zum Ausgleich von Unterdruckbedingungen

600 DACHMANSCHETTENSÄTZE

Satz einfach wirkender, geteilter Dachmanschetten mit herkömmlicher Komprimierung für höhere Dichtungsvorspannung an den Gleitflächen bei höherem Deckeldruck. Werkstoff auf Gummibasis passt sich Oberflächenunregelmäßigkeiten an und verhindert Leckage. Der Manschettensatz umfasst Dichtungsringe und unteren Adapter.

Profil	Beschreibung
R600	Gegossene, einfach wirkende herkömmliche Dachmanschette für ältere, abgenutzte Anlagen

Stangendichtungen - Kompression Statisch


Kompressionsdichtungen werden gewöhnlich mit einer höheren anfänglichen Vorspannung konstruiert, wodurch Leckage bei niedrigem Druck vermieden werden kann. Diese Profile werden gewöhnlich zum Einsatz in einer einzigen Nut konstruiert, können aber gegen Druck aus beiden Richtungen abdichten.

RCCS

RCCS STANGEN-/KOMPRESSIONSDICHTUNGEN

Diese Dichtung ist eine zweiteilige, bidirektionale Endlosspule mit durchgehendem Design; sie nutzt einen Gleitring mit einem O-Ring, um in Dichträumen mit einer Nut bei Hydraulikanwendungen eine äußerst wirksame Dichtung zu erzielen. Der Gleitring dient als dynamisches Dichtungselement, während der O-Ring den Gleitring spannt und eine statische Dichtung erzeugt.

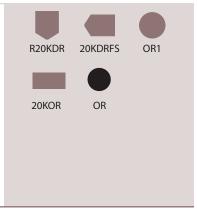
Profil	Beschreibung
RCCS	Maschinell hergestellte, zweiteilige Stangendichtung mit einem elliptischen Deckelprofil für effizientere Vorspannung bei Hydraulikanwendungen
RCCS1	Maschinell hergestellte, zweiteilige Stangendichtung mit einem Standardprofil für den Einsatz in Hydraulikanwendungen
RCCS2	Maschinell hergestellte, zweiteilige Stangendichtung mit einem rechteckigen Vorspannelement für den Einsatz in stark dynamischen Hydraulikanwendungen
RCCS3	Maschinell hergestellte, zweiteilige Stangendichtung mit einem gestuften Deckelprofil für den Einsatz in Hydraulikanwendungen
RCCS4	Maschinell bearbeitete, zweiteilige Kolbendichtung mit einem rechteckigen Vorspannelement und einem gestuften Kappenprofil für den Einsatz in stark dynamischen Hydraulikanwendungen

20K

KOMPRESSIONSDICHTUNG

Das ist eine bidirektionale Kompressionsdichtung mit durchgehendem Design und zwei separaten Dichtungsprofilen. Das robuste, dauerhafte Doppellippenprofil wurde speziell für Dichträume mit einer Nut in anspruchsvollen Hochdruck-Hydraulikanwendungen entwickelt. Das Dichtungsdesign hält Druckspitzen stand und reduziert gleichzeitig die Auswirkungen von seitlichen Belastungen der Anlage und hält die hohe Vorspannung aufrecht.

Profil	Beschreibung
R20K1	Maschinell hergestellte, robuste Stangendichtung für den Einsatz in Hydraulikanwendungen
R20K2	Maschinell hergestellte, robuste Stangendichtung mit durchgehendem Anti-Extrusionsring
R20K3	Maschinell hergestellte, robuste Stangendichtung mit aufgesetztem Anti-Extrusionsring
R20KDAER	Maschinell hergestellte, robuste Stangendichtung mit zwei partiellen Anti-Extrusionsringen

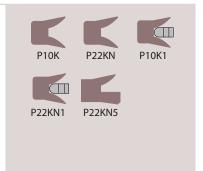


20KD

STATISCH/FLANSCHDICHTUNG

Eine Hochleistungs-Kompressionsdichtung mit durchgehendem Design, die üblicherweise zum Einsatz in statischen Anwendungen und häufig als Verbesserung von herkömmlichen O-Ringen benutzt wird. Designs sind für interne Flanschdichtungen sowie externe Flanschdichtungen erhältlich, die in einfach und doppelt wirkenden Anwendungen benutzt werden.

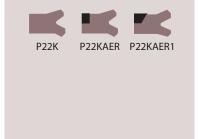
Profil	Beschreibung
R20KDR	Maschinell hergestellte Dichtung mit einem Dachprofil und dynamischem Dichtprofil am Innendurchmesser
20KDRFS	Maschinell hergestelltes Profil der Flanschdichtung mit dem dynamischem Dichtprofil entweder oben oder unten
OR1	Maschinell hergestellte Dichtung als Ersatz für einen O-Ring
OR	Maschinell bearbeitete Dichtung als Ersatz für einen herkömmlichen O-Ring
20KOR	Maschinell bearbeitete rechteckige Dichtung zum Abdichten von statischen Verbindungsanschlüssen bei standardmäßigen Hydraulikventilen und Steuereinheiten


Kolbendichtungen – Nutringe

Die Funktion einer Kolbendichtung ist zu verhindern, dass unter verschiedenen Betriebsbedingungen Flüssigkeit zwischen Kolbenboden und Zylinderbohrung austritt.

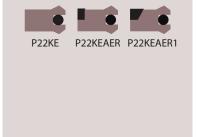
10K/22KN NUTRINGE

Eine einfach wirkende Stangen- oder Kolbendichtung mit durchgehender Nutringkonstruktion, die während des Betriebs Verunreinigungen von der Gleitfläche wischt. Das Lippenprofil mit positivem Flankenwinkel bietet optimale radiale Dichtwirkung bei minimalem Reibungswiderstand für den Einsatz in Hydraulik- und Pneumatikanwendungen.


Profil	Beschreibung
P10K	Gegossene Kolbendichtung zum Einsatz in Hydraulik- oder Pneumatikzylindern und -pressen
P22KN	MaschinellhergestellteKolbendichtungzumEinsatzinHydraulik-oderPneumatikzylindernund-pressenLeiner (1998)
P10K1	Gegossene Kolbendichtung mit Distanzring für Unterdrucksituationen
P22KN1	Maschinell hergestellte Kolbendichtung mit Distanzring für Unterdrucksituationen
P22KN5	Maschinell hergestellte Kolbendichtung mit größerer statischer Lippe für zusätzliche Stabilität und Unterdruckbeständigkeit

22K NUTRINGE

Eine einfach wirkende Stangen- oder Kolbendichtung für Hydraulikanwendungen mit durchgehendem Design und einer speziellen Lippengeometrie, die über den gesamten Betriebsbereich Null Leckage bietet. Die robuste, statische Lippe stabilisiert die Dichtung und verhindert Rollen, während die negativ angestellte Flanke den Einbau erleichtert.


Profil	Beschreibung
P22K	Maschinell hergestellte Kolbendichtung für Hydraulikzylinder und -pressen
P22KAER	Maschinell hergestellte Kolbendichtung mit einem aufgesetzten, rechteckigen Anti-Extrusionsring für Anwendungen mit übermäßigem Spiel und Druckspitzen
P22KAER1	Maschinell hergestellte Kolbendichtung mit kundenspezifischem Anti-Extrusionsring für Anwendungen mit übermäßigem Spiel und Druckspitzen

22KE NUTRINGE

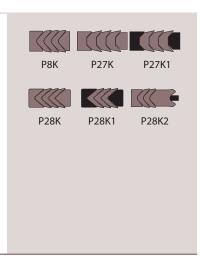
Eine einfach wirkende Kolbendichtung mit durchgehendem Design und integriertem O-Ring, der die Vorspannung für extremen Niederdruckeinsatz bei Hydraulikanwendungen erhöht. Der O-Ring spannt die Dichtung, wodurch diese bei fehlendem Systemdruck eine stärkere Vorspannkraft ausüben kann.

Profil	Beschreibung
P22K	Maschinell hergestellte Kolbendichtung für Hydraulikzylinder und -pressen
P22KAER	Maschinell hergestellte Kolbendichtung mit einem partiellen, rechteckigen Anti-Extrusionsring für Anwendungen mit übermäßigem Spiel und Druckspitzen
P22KAER1	Maschinell hergestellte Kolbendichtung mit kundenspezifischem Anti-Extrusionsring für Anwendungen mit übermäßigem Spiel und Druckspitzen

23K NUTRINGE

Eine einfach wirkende Stangen- oder Kolbendichtung mit durchgehendem Design und einer einzigartigen dynamischen Lippengeometrie, die optimale Dichtkraft für Pneumatikanwendungen erzeugt.

Profil	Beschreibung
P23K	Maschinell hergestellte Kolbendichtung mit durchgehendem Design

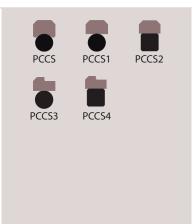

Kolbendichtungen – Dachmanschetten

Dachmanschetten werden am häufigsten zur Sicherstellung von einfachem Einbau auf Grund der geteilten Bauweise eingesetzt. Die Dichtungsringe sind innerhalb eines oberen/äußeren und unteren/inneren Adapters eingesetzt. Der innere Adapter zentriert die Dichtungsringe und spannt die Dachmanschette unter Systemdruck vor. Der äußere Adapter führt die Dachmanschette und hilft das Extrudieren in große Anlagenhohlräume auszugleichen.

8K/27K DACHMANSCHETTEN

Die druckaktivierten Kolben- und Dachmanschetten sind zum Einsatz in Hydraulikanwendungen vorgesehen. Der einfach wirkende positive Flankenwinkel erzeugt Kontakt in der Mitte der Dachmanschette, um eine gleichmäßige Belastung, längere Dichtungsstandzeit und minimalen Deckeldruck sicherzustellen. Die meisten Manschetten sind in geteilter oder ungeteilter Ausführung erhältlich.

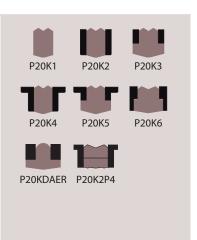
Profil	Beschreibung
P8K	Gegossene, einfach wirkende symmetrische Dachmanschette, geteilt oder ungeteilt erhältlich
P27K	Maschinell hergestellte, einfach wirkende symmetrische Dachmanschette, geteilt oder ungeteilt erhältlich
P27K1	Maschinell hergestellte, einfach wirkende symmetrische Dachmanschette mit kundenspezifischen Adaptern für große Freiräume
P28K	Maschinell hergestellte, einfach wirkende symmetrische Dachmanschette zum Ersatz typischer Industriemanschetten
P28K1	Maschinell hergestellte, einfach wirkende symmetrische Dachmanschette mit Adaptern aus technischen Kunststoffen für bessere Führung und Widerstand gegen Extrusion
P28K2	Kundenspezifisch maschinell hergestellte, einfach wirkende symmetrische Dachmanschette mit inneren Adaptern aus technischen Kunststoffen für bessere Führung und Widerstand gegen


Kolbendichtungen – Kompression

CCS

KOMPRESSIONSDICHTUNG

Diese Dichtung ist eine zweiteilge, bidirektionales Dichtsystem, die einen Geitring mit einem O-Ring dazu nutzt, in Dichträumen mit einer Nut bei Hydraulikanwendungen eine äußerst wirksame Dichtung zu erzielen. Der Gleitring dient als dynamisches Dichtungselement, während der O-Ring den Deckel spannt und eine statische Dichtung erzeugt.


Profil	Beschreibung
PCCS	Maschinell hergestellte, zweiteilige Kolbendichtung mit einem elliptischen Gleitring für effizientere Vorspannung bei Hydraulikanwendungen
PCCS1	Maschinell hergestellte, zweiteilige Kolbendichtung mit einem Standardprofil für den Einsatz in Hydraulikanwendungen
PCCS2	Maschinell hergestellte, zweiteilige Kolbendichtung mit einem rechteckigen Vorspannelement für den Einsatz in stark dynamischen Hydraulikanwendungen
PCCS3	Maschinell hergestellte, zweiteilige Kolbendichtung mit einem gestuften Gleitring für den Einsatz in Hydraulikanwendungen
PCCS4	Maschinell bearbeitete, zweiteilige Kolbendichtung mit einem rechteckigen Vorspannelement und einem gestuften Kappenprofil für den Einsatz in stark dynamischen Hydraulikanwendungen

KOMPRESSIONSDICHTUNG

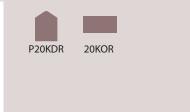
Das ist ein bidirektionales Kompressionsdichtungsdesign mit zwei separaten Dichtungspunkten. Das robuste, langlebige Doppellippenprofil wurde speziell für Dichträume mit einer Nut in anspruchsvollen Hochdruck-Hydraulikanwendungen entwickelt. Die Dichtungskonstruktion hält Druckspitzen stand und reduziert gleichzeitig die Auswirkungen von seitlichen Belastungen der Anlage.

Profil	Beschreibung
P20K1	Maschinell hergestellte, robuste Kolbendichtung für den Einsatz in Hydraulikanwendungen
P20K2	Maschinell hergestellte, robuste Kolbendichtung mit zwei durchgehenden Anti-Extrusionsringen
P20K3	Maschinell hergestellte, robuste Kolbendichtung mit zwei partiellen Anti-Extrusionsringen
P20K4	Maschinell hergestellte Kolbendichtung mit zwei durchgehenden L-förmigen Anti-Extrusionsringen
P20K5	Maschinell hergestellte, robuste Kolbendichtung mit zwei partiellen L-förmigen Anti-Extrusionsringen
P20K6	Maschinell hergestellte, robuste Kolbendichtung mit zwei partiellen L-förmigen Anti-Extrusionsringen
P20KDAER	Maschinell hergestellte, robuste Kolbendichtung mit zwei robusten rechteckigen Anti-Extrusionsringen
P20K2P4	Maschinell hergestellte, robuste vierteilige Kolbendichtung mit zwei durchgehenden L-förmigen Anti-Extrusionsringen

TOPFMANSCHETTE

Eine einfach wirkende Topfmanschette mit positiv angestellter aufgeweiteter Lippe, für optimale Dichtkräfte. Das formgegossene Design wird durch eine Messingscheibe verstärkt, die in die Dichtung eingearbeitet ist, um zu starke Komprimierung des Flansches zu verhindern und so die Dichtwirkung zu verbessern. Der resultierende starre Sockel bietet eine stabile, verzerrungs- und extrusionsbeständige Dichtung. Sie kann in doppelt wirkenden Anwendungen auch hintereinander eingesetzt werden.

Profil	Beschreibung
P7K	Formgegossene Topfmanschette mit im Sockel integrierter Messingscheibe, die die Stabilität verbessert und Widerstand gegen Extrusion bietet
P7K1	Maschinell hergestellte Topfmanschetten-Konstruktion (ohne integrierte Messingscheibe)

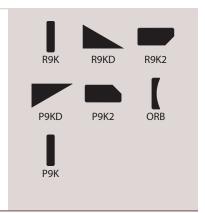

Pi	rofil	Beschreibung
P7	7K	Formgegossene Topfmanschette mit im Sockel integrierter Messingscheibe, die die Stabilität verbessert und Widerstand gegen Extrusion bietet
P7	7K1	Maschinell hergestellte Topfmanschetten-Konstruktion (ohne integrierte Messingscheibe)

20KD

KOLBENMONTIERST - STATISCHE FLANSCHDICHTUNG

Eine Hochleistungs-Kompressionsdichtung mit durchgehendem Design, die üblicherweise zum Einsatz in statischen Anwendungen und häufig als Verbesserung von herkömmlichen O-Ringen benutzt wird. Designs sind für interne Flanschdichtungen sowie externe Flanschdichtungen erhältlich, die in einfach und doppelt wirkenden Anwendungen benutzt werden.

Profil	Beschreibung
P20KDR	Maschinell hergestelltes Dichtungsprofil, dynamische Seite befindet sich am Außendurchmesser
20KOR	Maschinell bearbeitete rechteckige Dichtung zum Abdichten von statischen Verbindungsanschlüssen bei standardmäßigen Hydraulikventilen und Steuereinheiten



Zusatzvorrichtungen – Anti-Extrusionsringe (AER)

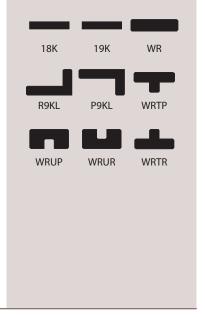
9K ANTI-EXTRUSIONSRINGE (AER)

Anti-Extrusionsringe – manchmal auch als Stützringe bezeichnet – verhindern, dass Dichtungen unter Druck in den Spalt gepresst werden. Sie werden gemeinsam mit einer Dichtung oder einem O-Ring eingesetzt und sind in unterschiedlichen extrusionsbeständigen Werkstoffen erhältlich und werden an der Rückseite oder Niederdruckseite der geführten Dichtung eingebaut.

Profil	Beschreibung
R9K	Maschinell hergestelltes Rechtecksprofil, Stangenkonstruktion
R9KD	Maschinell hergestelltes Dreiecksprofil, benutzt mit Stangenkonstruktion
R9K2	Maschinell hergestelltes kundenspezifisches Profil für distinktive Kolbendichtungskonstruktion
P9KD	Maschinell hergestelltes Dreiecksprofil, benutzt mit distinktiver Kolbendichtungskonstruktion
P9K2	$Maschinell\ herge stelltes\ kundenspezifisches\ Profil,\ benutzt\ mit\ distinktiver\ Kolbendichtungskonstruktion$
ORB	Maschinell hergestelltes kundenspezifisches Profil, benutzt in Kombination mit einem O-Ring
P9K	Maschinell hergestelltes Rechtecksprofil, Kolbenkonstruktion

16K/17K FÜHRUNGSELEMENTE

Führungsbänder sind die wirtschaftliche Lösung für teure Zylinderüberholungen und -reparaturen und eignen sich für den Einsatz an Kolben in Hubanwendungen. Diese geteilten, auswechselbaren Führungsbänder verhindern Metallkontakt von bewegten Teilen und verlängern die Anlagenlebensdauer.

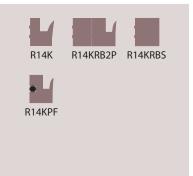

Profil	Beschreibung
16K	Gegossene endlose Spule für metrische Abmessungen zum Einsatz in Stangen- und Kolbenanwendungen
17K	Gegossene endlose Spule für US-Abmessungen zum Einsatz in Stangen- und Kolbenanwendungen

R16K R17K

18K, 19K FÜHERUNGSELEMENTE UND KUNDENSPEZIFISCHE VERSCHLEISSRINGE

Führungsringe und Verschleißringe sind die Lösung für teure Zylinderüberholungen und -reparaturen für Hydraulikund Pneumatikanlagen. Diese geteilten, auswechselbaren Führungsringe verhindern Metallkontakt von bewegten Teilen und verlängern die Anlagen- und Dichtungslebensdauer. Diese Führungsbänder verringern radiale Bewegung, verlängern dadurch die Dichtungsstandzeit und reduzieren die Wahrscheinlichkeit wiederkehrender Schäden.

Profil	Beschreibung
18K	Gegossene Führungsbänder in US-Größen zum Einsatz in Stangen- und Kolbenanwendungen mit moderater und starker Belastung, hergestellt aus glasfaserverstärktem, heiß stabilisiertem Nylon
19K	Präzisionsgegossene Führungsbänder in metrischen Größen zum Einsatz in Stangen- und Kolbenanwendungen mit moderater und starker Belastung, hergestellt aus glasfaserverstärktem, heiß stabilisiertem Nylon
WR	Maschinell hergestellter, kundenspezifischer Verschleißring zum Einsatz in Kolben- und Stangenanwendunger mit leichter bis moderater Belastung, erhältlich in verschiedenen technischen Kunststoffen
R9KL	Maschinell hergestellter, L-förmiger Verschleißring zum Einsatz in Stangenanwendungen mit leichter bis moderater Belastung, erhältlich in verschiedenen technischen Kunststoffen
P9KL	Maschinell hergestellter, L-förmiger Verschleißring zum Einsatz in Kolbenanwendungen mit leichter bis moderater Belastung, erhältlich in verschiedenen technischen Kunststoffen
WRTP	Maschinell hergestellter, T-förmiger Verschleißring zum Einsatz in Kolbenanwendungen mit leichter bis moderater Belastung, erhältlich in verschiedenen technischen Kunststoffen
WRUP	Maschinell hergestellter, kundenspezifisch konstruierter, konturierter Verschleißring zum Einsatz in Kolben- anwendungen mitleichter bis moderater Belastung, erhältlich in verschiedenen technischen Kunststoffen
WRUR	Maschinell hergestellter, kundenspezifisch konstruierter Verschleißring zum Einsatz in Stangenanwendungen mit leichter bis moderater Belastung, erhältlich in verschiedenen technischen Kunststoffen
WRTR	Maschinell hergestellter, T-förmiger Verschleißring zum Einsatz in Stangenanwendungen mit leichter bis moderater Belastung, erhältlich in verschiedenen technischen Kunststoffen


Rotierende Dichtungen

14K

DROSSELBUCHSE

Drosselbuchsen eignen sich zum Einsatz in rotierenden Anwendungen zur Bildung einer Barriere zwischen der Dichtung im Dichtraum oder dem Pumpenlaufradgehäuse und der gepumpten Flüssigkeit. Die Buchse verhindert, dass schleifend wirkende Teilchen in den Dichtraum gelangen und verringert die erforderliche Spülflüssigkeitsmenge. Diese Buchsen werden einzeln aus verschiedenen Werkstoffen hergestellt und bieten ausgezeichnete Leistung in Pumpen, Rühr- und Mischwerken, Refinern und anderen Anlagen.

Profil	Beschreibung
R14K	Maschinell hergestellte Polymer-Drosselbuchse für den Einsatz in rotierenden Anwendungen
R14KRB2P	Maschinell hergestellte zweiteilige Drosselbuchse für große Querschnitte
R14KRBS	Maschinell hergestellte Distanzscheibe für den Einsatz in tiefen Dichträumen
R14KPF	Maschinell hergestellte Drosselbuchse aus Virgin PTFE für den Einsatz in rotierenden Anwendungen mit aggressiven Flüssigkeiten

30K

LAGER- UND GETRIEBESCHUTZ

Hochleistungs-Dichtungen mit durchgehendem Design, die die Leistung herkömmlicher rotierender Lippendichtungen in Lager- und Getriebeanwendungen verbessern. Diese Konstruktionen sind in verschiedenen verstärkten PTFE-Werkstoffen erhältlich, die höhere Drehzahlen, breiteren Temperaturbereich, bessere chemische Verträglichkeit und längere Lebensdauer bieten.

Profil	Beschreibung
30K	Maschinell hergestellte Doppellippen-Ersatzdichtung mit durchgehendem Design für rotierende Anwendungen mit hoher oder niedriger Drehzahl
30KW	Maschinell hergestellte Doppellippen-Ersatzdichtung mit durchgehendem Design und integriertem Abstreifer für rotierende Anwendungen mit hoher oder niedriger Drehzahl
30KSW	Maschinell hergestellte Einzellippen-Ersatzdichtung mit durchgehendem Design und integriertem kompakten Abstreifer für rotierende Anwendungen mit hoher oder niedriger Drehzahl
30KB	Maschinell bearbeitete Doppellippen-Ersatzdichtung mit metallischem Führungsband für rotierende Anwendungen mit hoher oder niedriger Drehzahl
30KWB	Maschinell bearbeitete Doppellippen-Ersatzdichtung mit integriertem Abstreifer und metallischem Führungsband für rotierende Anwendungen mit hoher oder niedriger Drehzahl

LAGER- UND GETRIEBESCHUTZ

Geteilte Hochleistungs-Dichtungsringe, die die Leistung herkömmlicher rotierender Lippendichtungen in Lagerund Getriebeanwendungen verbessern. Das geteilte Design eliminiert den Bedarf für Anlagendemontage. Der Zeitaufwand für den Einbau lässt sich von Stunden auf Minuten reduzieren. Die Dichtung ist in verschiedenen PTFE-verstärkten Werkstoffen mit Polymer-Adaptern erhältlich.

Profil	Beschreibung
33K	Maschinell hergestellte, geteilte Dichtung für rotierende Anwendungen mit hoher oder niedriger Drehzahl

30KC

PULVER UND VISKOSE FLÜSSIGKEITEN

Hochleistungs-Cartridge-Dichtung aus Polymer für den Einsatz in dynamischen rotierenden Dichtungsanwendungen. In diesem Cartridge-Design werden PTFE verstärkte Hochleistungswerkstoffe eingesetzt, die den hohen Scherkräften, der Reibungswärme und den Reibkräften standhalten, die beim Pumpen von hochviskosen Produkten und Pulvern auftreten.

338	76
30KC	

33K

Profil	Beschreibung
30KC	Maschinell hergestelltes Cartridge-Design für das Abdichten von Pulver und viskosen Flüssigkeiten

Federvorgespannte Dichtungen

SERIE 100 MÄANDERFEDERN

Mit Mäanderfedern vorgespannte Dichtungen werden in erster Linie in stark dynamischen Anwendungen für rotierende Anlagen und Hubanlagen eingesetzt, da die Federausführung eine starke Durchbiegung bei minimaler Belastung ermöglicht. Das ist die beliebteste Serie federvorgespannter Dichtungskonstruktionen, da ihre einzigartigen Eigenschaften die Standzeit von Dichtung und Maschinenteilen erhöhen.

Profil	Beschreibung
100	Maschinell hergestellter, symmetrischer Nutring für Stangen- und Kolbenanwendungen
101	Maschinell hergestellter Nutring mit positivem Flankenprofil an der dynamischen Lippe
103	Maschinell hergestellte, symmetrische Nutring-Flanschdichtung
105	Maschinell hergestellte, symmetrische Nutring-Stangendichtung mit Flansch für Hubanwendungen und rotierende Anwendungen, Flansch eliminiert Dichtungsverdrehung
107	Maschinell hergestellte Nutring-Kolbendichtung, speziell für große Querschnitte
109	Maschinell hergestellte Nutring-Stangendichtung, speziell für große Querschnitte
115	Maschinell hergestellte Nutring-Stangen- und Kolbendichtung für Hubanwendungen und rotierende Anwendungen bei niedrigem Druck
119	Maschinell hergestellte Nutring-Kolbendichtung für Hubanwendungen und rotierende Anwendungen bei niedrigem Druck
130	$Maschinell\ hergestellte\ Nutring-Stangen-\ und\ Kolbendichtung\ mit\ F\"uhrungsring\ zur\ Dichtungsstabilisierung$
139	Maschinell hergestellte Nutring-Stangen- und Kolbendichtung zur Isolierung der Flüssigkeit von der Feder

SERIE 200 ELLIPTISCHES DESIGN

Mit elliptische Schraubenfedern vorgespannte Dichtungen werden häufig in rotierenden und statischen Anwendungen sowie Hubanwendungen eingesetzt, bei denen Bauteiltoleranzen relativ groß sind oder eine Miniaturdichtung erforderlich ist. Die Konstruktion mit elliptische Schraubenfedern ermöglicht minimale Durchbiegung und beaufschlagt moderate Last.

Profil	Beschreibung
200	Maschinell hergestellter, symmetrischer Nutring mit einem Standard-Lippenprofil
204	Maschinell hergestellte, symmetrische Flanschdichtung mit Standard-Lippenprofil, zum Abdichten am Innendurchmesser
205	Maschinell hergestellte, symmetrische Nutring-Stangendichtung mit Flansch für Hubanwendungen und rotierende Anwendungen, Flansch eliminiert Dichtungsverdrehung

Federvorgespannte Dichtungen

SERIE 300 STÜTZWENDELFEDER

Mit Stützwendelfeder gespannte Dichtungen werden in erster Linie in statischen Anwendungen, bei langsamen Drehzahlen, extrem tiefen Temperaturen und/oder seltenen dynamischen Zuständen eingesetzt, bei denen Reibung und Verschleiß zweitrangig sind. Die Federausführung bietet ausgezeichnete Belastbarkeit bei minimaler Durchbiegung.

Profil	Beschreibung
300	Maschinell hergestellter, symmetrischer Nutring mit einem Standard-Lippenprofil
304	Maschinell hergestellte, symmetrische Flanschdichtung mit Standard-Lippenprofil, zum Abdichten am Innendurchmesser
305	Maschinell hergestellte, symmetrische Nutring-Stangendichtung mit Flansch für Hubanwendungen und rotierende Anwendungen, Flansch eliminiert Dichtungsverdrehung

SERIE 400	ROTI	EREND

Hochleistungs-Mehrzweckdichtungsringe sind für den Einsatz in dynamischen Anwendungen vorgesehen. Die einzigartige Ausführung der Lippendichtung wird mechanisch geformt und erzeugt optimale Dichtkraft. Die Werkstoffe in Kombination mit der ausgezeichneten Dichtungskonstruktion ergeben eine ausgezeichnete Verträglichkeit mit Flüssigkeiten und erstklassige Leistung.

Profil	Beschreibung
411	Maschinell hergestellte Lippendichtung für Stangenanwendungen in Maschinen mit großen Exzentritäten
414	Maschinell hergestellte Lippendichtung für Stangenanwendungen mit federvorgespannter statischer Dichtung und Stabilisierungsring



SERIE 500 DACHMANSCHETTEN

Die Hochleistungs-Mehrzweckdachmanschetten sind speziell für Maschinen mit tiefen Dichträumen vorgesehen. Diese Manschetten werden sowohl in rotierenden als auch Hubanwendungen eingesetzt und sind je nach Anwendungsanforderung in ungeteilter und geteilter Ausführung erhältlich.

Profil	Beschreibung
500	Maschinell hergestellte, symmetrische V-Ring-Dachmanschette, geteilt oder geschlossen, für tiefe Dichträume
520	Maschinell hergestellte, symmetrische, geschlossene V-Ring-Dachmanschette, mit federvorgespanntem Primärdichtungsring, für tiefe Dichträume
521	Maschinell hergestellte, symmetrische, geschlossene V-Ring-Dachmanschette, mit federvorgespanntem Primärdichtungsring und Stabilisatorring, für tiefe Dichträume
540	Maschinell hergestellte, symmetrische, geschlossene V-Ring-Dachmanschette, mit federvorgespanntem Primärdichtungsring, für tiefe Dichträume

Empfohlene Dichtungsgröße

Bei der Auswahl einer Dichtung muss ein Dichtungsquerschnitt benutzt werden, der für die Durchmesser von Bohrung oder Stange geeignet ist. Tabellen 1 und 2 enthalten empfohlene Querschnitts- und Tiefenbereiche für Chesterton-Produkte. Diese können für viele Nutringe bei üblichen Industrieanwendungen benutzt werden. Die empfohlene Dichtungstiefe muss um ca. 50 % größer als der Querschnitt sein, damit die Dichtung stabil ist. Bei Anwendungen, die außerhalb üblicher Industriebedingungen laufen, wird dringend angeraten, die Eignung dieser Bereiche von der technischen Abteilung von Chesterton bestätigen zu lassen.

TABELLE 1	MET	RISCH	
	esserbereich, Querschnitts- mm bereich		Tiefen- bereich
Min	Max	Min-Max	Min-Max
_	25	3,00-4,00	5,00-6,00
>25	50	3,00-5,00	5,00-7,00
>50	100	4,00-7,00	6,00-11,00
>100	150	5,00-10,00	7,00-14,00
>150	200	6,00-12,00	10,00-19,00
>200	300	10,00-16,00	14,00-24,00
>300	1250+	12,00+	19,00+

TABELLE 2	ZOLI	-	
	serbereich, oll	Querschnitts- bereich	Tiefen- bereich
Min	Max	Min-Max	Min-Max
_	1,000	0,125-0,156	0,187-0,250
>1,000	2,000	0,125-0,187	0,187-0,281
>2,000	4,000	0,156-0,281	0,250-0,437
>4,000	6,000	0,187-0,375	0,281-0,562
>6,000	8,000	0,250-0,500	0,375-0,750
>8,000	12,000	0,375-0,625	0,562-0,937
>12,000	48,000+	0,500+	0,750+

Tabelle der Standardpassungen und Toleranzdaten

Passungen und Toleranzen – auf Basis von ISO 286-1

Diese Toleranzklassen nach der ISO-Norm dienen zum Definieren eines akzeptablen Größenbereichs für die Herstellung oder Überholung von Anlagen. Die Tabelle unten zeigt allgemein akzeptierte Industrienormen für Hydraulik- und Pneumatikanlagen. Es muss jedoch darauf geachtet werden, dass diese Werte eventuell nicht auf alle Anwendungen zutreffen.

Eine Toleranzklasse wird mit einer grundlegenden Größe kombiniert, um den zulässigen Bereich zu bestimmen. Beispiel: Eine 420-mm-Bohrung mit einer Toleranzklasse H9, d. h., 420 H9, hätte eine grundlegende Größe und Toleranz von 420 +155/-0, was einen zulässigen Größenbereich von 420,15 bis 420,00 mm ergibt.

Lassen Sie sich von Application Engineering über die Eignung dieser Tabelle informieren.

	– Grundlegende Größe	Toleranz	Toleranz	Toleranz	Toleranz
	(Zoll)	(Stange)	(Bohrung)	(Stange)	(Bohrung)
Minimum	Maximum	h9	Н9	f11	F11
>6	10	+ 0/-36	+36/-0	-13/-103	+103/+13
(0,236)	(0,394)	(+0/-0,001)	(+0,001/-0)	(-0,0005/-0,004)	(+0,004/+0,0005)
>10	18	+ 0/-43	+43/-0	-16/-126	+126/+16
(0,394)	(0,709)	(+0/-0,002)	(+0,002/-0)	(-0,0006/-0,005)	(+0,005/+0,0006)
>18	30	+ 0/-52	+52/-0	-20/-150	+150/+20
(0,709)	(1,181)	(+0/-0,002)	(+0,002/-0)	(-0,0008/-0,006)	(+0,006/+0,0008)
>30	50	+ 0/-62	+62/-0	-25/-185	+185/+25
(1,181)	(1,968)	(+0/-0,002)	(+0,002/-0)	(-0,0009/-0,007)	(+0,007/+0,0009)
>50	80	+ 0/-74	+74/-0	-30/-220	+220/+30
(1,968)	(3,150)	(+0/-0,003)	(+0,003/-0)	(-0,001/-0,009)	(+0,009/+0,001)
>80	120	+ 0/-87	+87/-0	-36/-256	+256/+36
(3,150)	(4,724)	(+0/-0,003)	(+0,003/-0)	(-0,001/-0,010)	(+0,010/+0,001)
>120	180	+ 0/-100	+100/-0	-43/-293	+293/+43
(4,724)	(7,086)	(+0/-0,004)	(+0,004/-0)	(-0,002/-0,011)	(+0,011/+0,002)
>180	250	+ 0/-115	+115/-0	-50/-340	+340/+50
(7,086)	(9,842)	(+0/-0,004)	(+0,004/-0)	(-0,002/-0,013)	(+0,013/+0,002)
>250	315	+ 0/-130	+130/-0	-56/-376	+376/+56
(9,842)	(12,401)	(+0/-0,005)	(+0,005/-0)	(-0,002/-0,015)	(+0,015/+0,002)
>315	400	+ 0/-140	+140/-0	-62/-422	+422/+62
(12,401)	(15,748)	(+0/-0,005)	(+0,005/-0)	(-0,002/-0,017)	(+0,017/+0,002)
>400	500	+ 0/-155	+155/-0	-68/-468	+468/+68
(15,748)	(19,685)	(+0/-0,006)	(+0,006/-0)	(0,003/-0,018)	(+0,018/+0,003)
>500	630	+ 0/-175	+175/-0	-76/-516	+516/+76
(19,685)	(24,803)	(+0/-0,007)	(+0,007/-0)	(0,003/-0,020)	(+0,020/+0,003)
>630	800	+ 0/-200	+200/-0	-80/-580	+580/+80
(24,803)	(31,496)	(+0/-0,008)	(+0,008/-0)	(-0,003/-0,023)	(+0,023/+0,003)
>800	1000	+ 0/-230	+230/-0	-86/-646	+646/+86
(31,496)	39,370)	(+0/-0,009)	(+0,009/-0)	(-0,003/-0,025)	(+0,025/+0,003)
>1000	1250	+ 0/-260	+260/-0	-98/-758	+758/+98
(39,370)	(49,213)	(+0/-0,010)	(+0,010/-0)	(-0,004/-0,030)	(+0,030/+0,004)
>1250	1600	+0/-310	+310/-0	-110/-890	+890/+110
(49,212)	(62,992)	(+0/-0,012)	(+0,012/-0)	(-0,004/-0,035)	(+0,035/+0,004)
>1600	2000	+0/-370	+370/-0	-120/-1040	+1040/+120
(62,992)	(78,740)	(+0/-0,015)	(+0,015/-0)	(0,005/0,041)	(+0,041/+0,005)

^{*} mm-Werte angegeben in 0,001 mm

Anwendung der Passungen und Toleranzen nach ISO-Normen

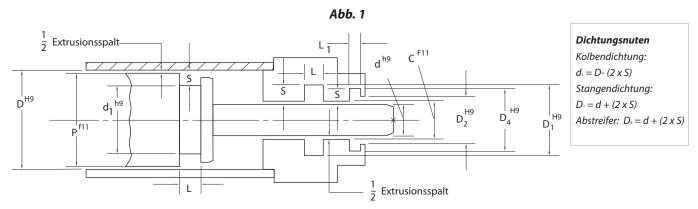


Abb. 1 Die Beispiele unten illustrieren, wie Passungen und Toleranzen zur Bemessung einer oder mehrerer Komponenten des in Abbildung 1 für metrische und US-Größen gezeigten Zylinders angewendet werden können.

Bohrungsbemessung

300,00 mm Bohrung mit Toleranz H9 $D^{H9} = 300,00 \text{ mm} + 130/-0$

Zulässiger Größenbereich = 300,13 - 300,00 mm

Kolbendurchmesser-Bewegungsspiel

Kolbendurchmesser P zur Passung in 300,00 mm Bohrung $P^{f11} = 300,00 - 56/-376 \text{ mm}$

Zulässiger Größenbereich = 299,94 - 299,62 mm

Kolbendichtungsnut

300,00 mm Bohrung, Kolbendichtungs-Querschnitt S = 12,00 mm $d_1 = D - (2 \times S)$ mit Toleranz h9 = 300,00 - (2 x 12,00) = 276,00 + 0/-130

Zulässiger Größenbereich = 276,00 - 275,87 mm

Stangenbemessung

3,00 Zoll Stange mit Toleranz h9 $d^{h9} = 3,00 \text{ ZoII} + 0/-0,003$

Zulässiger Größenbereich = 3,00 - 2,997 Zoll

Deckelinnendurchmesser-Bewegungsspiel

Deckelinnendurchmesser für Passung einer 3,00 Zoll Stange $C^{F11} = 3,00 + 0,009/+0,001 \text{ ZoII}$

Zulässiger Größenbereich = 3,009 - 3,001 Zoll

Stangendichtungsnut

3,00 Zoll Stange, Stangendichtungs-Querschnitt S = 0,250 Zoll" $D_4 = 3,000 + (2 \times 0,250)$ mit Toleranz H9 = 3,500 + 0,003/-0

Zulässiger Größenbereich = 3,503 - 3,500 Zoll

Exrusionsspalt

Es ist zu beachten, dass der resultierende Extrusionsspalt auf den Dichtungsführungsstegen immer innerhalb der für das verwendete Dichtungsprofil und den verwendeten Dichtungswerkstoff veröffentlichten Grenzen liegen muss. AWC-Werkstoff und Profilnennwerte sind der "Tabelle – Zulässiger Extrusionsspalt" zu entnehmen.

Kolbendichtung: Durchmesserspiel = D - PFür obige Bohrung und Kolben Maximaler Extrusionsspalt = Dmax - Pmin

= 300,13 - 299,62 mm = 0,51 mm

Stangendichtung: Durchmesserspiel = C - a

Für obige Stange und Deckel

Maximaler Extrusionsspalt = Cmax - dmin

= 3,009 - 2,997 = 0,012 Zoll

Richtlinien für verschiedene Bauteile — Linearanwendungen

Abb. 1

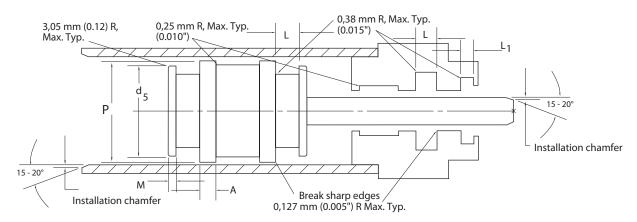


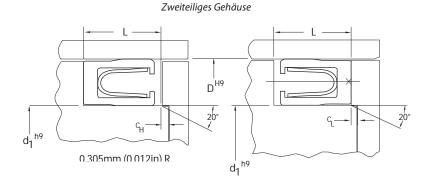
Tabelle 1 zeigt allgemeine Richtlinien für die Konstruktion von Bauteilen, mit denen der Einbau erleichtert und Schäden an Dichtungen für typische Hydraulik- und Pneumatikanwendungen verhindert werden können. Hinweis: Kolbenstegbereiche A und M = 3,18 mm (0,125 Zoll) min.

TABELLE 1

EINBAUFASEN						
Dichtungs-Quer mm	schnittsbereich (Zoll)	Fasen mm	größe (Zoll)			
< 3,17	(0,125)	1,52	(0,060)			
> 3,17 - 6,35	(0,125 - 0,250)	2,03	(0,080)			
>6.35 - 9,53	(0,250 - 0,375)	2,54	(0,100)			
>9,53 – 12,70	(0,375 - 0,500)	3,30	(0,130)			
>12,70 - 15,88	(0,500 - 0,625)	3,94	(0,155)			
>15,88 – 19,05	(0,625 - 0,750)	4,57	(0,180)			
>19,05 – 22,23	(0.750 - 0,875)	5,08	(0,200)			
>22,23 – 25,40	(0,875 - 1,000)	5,59	(0,220)			
> 25,40	(1,000)	5,84	(0,230)			

Tabelle 2 enthält die empfohlenen Nutentiefen für die allgemeinen Chesterton-Dichtungskonstruktionen. Der Kolbenspieldurchmesser (d_s) hängt vom Dichtungsprofil ab.

TABELLE 2								
NUTENTIEFEN								
Profil	Tiefe Dichtungsspiel L = H + Spiel		Tiefe Abstreiferspiel L1 = H2 + Spiel		Ød5			
	L	Toleranz	L1	Toleranz				
22K, 22KE, 23K	= Dichtungstiefe H + 0,76 mm (0,030)	+0,38 mm/-0 (+0,015/-0)	_		$= \frac{\text{Dichtungs-ID} + \text{Dichtungs-AD}}{2}$			
20K, 20KD, Gleitringdichtung	= Dichtungstiefe + 0,25 mm (0,010)	+0,25 mm/-0 (+0,010/-0)	_		muss gleich ØP sein			
5K, 21K, 21KH, 5KT5, 21KT5, 21KR	_		= Tiefe Abstreiferflanscht + 0,25 mm (0,010)	+0,25 mm/-0 (+0,010/-0)	-			
5K Kombi, 21KC	_		= Dichtungstiefe + 1,50 mm (0,062)	+0,38 mm/-0 (+0,015/-0)	-			
10K, 22KN	= Dichtungstiefe + 1,50 mm (0,062)	+0,38 mm/-0 (+0,015/-0)	_		$= \frac{\text{Dichtungs-ID} + \text{Dichtungs-AD}}{2}$			


Richtlinien für verschiedene Bauteile — rotierende und Linearanwendungen

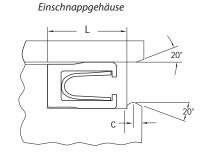
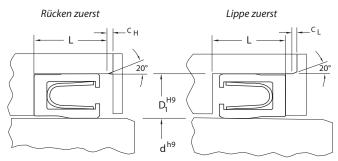
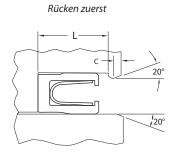

Dichtungen aus PTFE und technischen Kunststoffen und gewöhnlich federvorgespannt sind wesentlich starrer als Elastomer-Dichtungen und können beim Einbau leicht über die Elastizitätsgrenze hinaus gedehnt oder komprimiert werden. Daher wird empfohlen, ein offenes Gehäuse wie die in Abbildung 1 gezeigten zweiteiligen und Presspassungskonstruktionen zu nutzen.

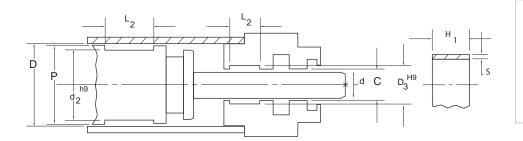
Abbildung 1 stellt typische Deckelkonstruktionen für Dichtungen aus PTFE/technischen Kunststoffen dar. Beispiele umfassen übliche zweiteilge und offene (Einschnappsytem) Gehäusekonstruktionen.


Abb. 1


Kolbenmontage:

Stangenmontage:

Hinweis: Maximaler Nutenradius = 3,50 mm (0,020 Zoll)


Die Dichtungsausrichtung beim Einbau schreibt vor, wieviel Fase erforderlich ist. Dichtungen, die mit der Lippe voran in die Nut eingesetzt werden, benötigen eine längere Fase, um Beschädigung beim Einbau zu vermeiden. Die folgende Tabelle enthält die empfohlenen Fasengrößen.

Dichtungs-Querschnittsbereich	Fase C	Einbaufase C _H	Einbaufase C _L
<2,36 mm (0,093 Zoll)	1,14 mm (0,045 Zoll)	0,51 mm (0,020 Zoll)	1,27 mm (0,050 Zoll)
> 2,36 mm (0,093 Zoll) – 3,17 mm (0,125 Zoll)	1,52 mm (0,060 Zoll)	0,76 mm (0,030 Zoll)	1,78 mm (0,070 Zoll)
> 3,17 mm (0,125 Zoll) – 6,35 mm (0,250 Zoll)	2,03 mm (0,080 Zoll)	1,02 mm (0,040 Zoll)	2,29 mm (0,090 Zoll)
> 6,35 mm (0,250 Zoll) – 9,53 mm (0,375 Zoll)	2,54 mm (0,100 Zoll)	1,27 mm (0,050 Zoll)	3,56 mm (0,140 Zoll)
> 9,53 mm (0,375 Zoll) – 12,70 mm (0,500 Zoll)	3,30 mm (0,130 Zoll)		•
> 12,70 mm (0,500 Zoll) – 5,88 mm (0,625 Zoll)	3,94 mm (0,155 Zoll)		
> 15,88 mm (0,625 Zoll) – 19,05 mm (0,750 Zoll)	4,57 mm (0,180 Zoll)		
> 19,05 mm (0,750 Zoll) – 22,23 mm (0,875 Zoll)	5,08 mm (0,200 Zoll)		
> 22,23 mm (0,875 Zoll) – 25,40 mm (1,000 Zoll)	5,59 mm (0,220 Zoll)		
>25,40 mm (1,000 Zoll)	5,84 mm (0,230 Zoll)		

 $Hinweis-Dichtungen\ mit\ einem\ Querschnitt\ von\ mehr\ 2,70\ mm\ (0,500\ Zoll)\ verfügen\ ""uber\ zwei\ Federn.$

Richtlinien für verschiedene Bauteile — Auswechselbare Führungsbänder

Nutentiefe L₂

 $L_2 = H_1 + 0.25 \text{ mm Tol.} + 0.25/-0$ $(H_1 + 0.010 \text{ Zoll Tol.} + 0.010/-0)$

Die folgende Tabelle enthält die Abmessungen für Bauteilspielwerte und Nutenkonstruktionen für alle auswechselbaren Führungsbänder von Chesterton. Der Einsatz austauschbarer Führungsbänder macht größere Spaltabstände erforderlich, um den Kontakt von Metallflächen zu verhindern. Daher ist der resultierende Extrusionsspalt für den Dichtungsführungssteg größer. Es muss sicherstellt werden, dass das aus dieser Tabelle erhaltene Spiel innerhalb der zulässigen Grenzwerte für den benutzten Dichtungswerkstoff liegt.

Führungsband-Nutendurchmesser

Kolbenmontage: $d2 = D - (2 \times S) - Rc \text{ mit Toleranz h9}$ Stangenmontage: $D3 = d + (2 \times S) + Rc \text{ mit Toleranz H9}$

Kolben- und Deckelspiel-Durchmesser

Kolbendurchmesser P = tats. Bohrungs-DM – "Spiel zwischen Kolben und Bohrung" und "Toleranz" aus der Tabelle Deckelinnendurchmesser C = tats. Stangen-DM + "Spiel zwischen Stange und Stopfbuchsbrille" und "Toleranz" aus der Tabelle

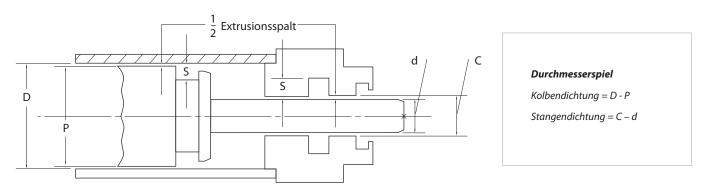
Beispiel 1: 200 mm Bohrung mit S = 2,50 mm $d2 = [200,00 - (2 \times 2,50) - 0,11] + 0/-115 =$ **194,89 + 0/-115** Größenbereich mit Toleranz = 194,89 bis 194,77 mm

P = 200,00 - 0,48 = 199,52 + 0/-0,10Größenbereich mit Toleranz = 199,52 bis 199,42 mm

Extrusionsspalt = 200 mm - 199,88 = 0,22 mm

Beispiel 2: 2,500 Zoll Stange S = 0,125 Zoll D3 = $[2,500 + (2 \times 0,125) + 0,003] + 0,003/-0 = 2,758 + 0,003/-0$ Größenbereich mit Toleranz = 2,761 bis 2,758 Zoll

C = 2,500 + 0,018 = 2,518 + 0,003/-0Größenbereich mit Toleranz = 2,521 bis 2,518 Extrusionsspalt = 2,521 - 2,500 = 0,021 Zoll


	FÜHRUNGSBAND-NUTENABMESSUNGEN									
Standa	DM- Bereich Standardgröße mm* (Zoll)		Spiel zwischen Kolben Spiel zwischen Stange und und Bohrung Stopfbuchsbrille		Bewegungsspiel	ISO-To	oleranz			
Min.	≤ Max.	(D-P)	Toleranz	(C-d)	Toleranz	Rc	Н9	h9		
	50	0,43	+0/-0,05	0,43	+0,05/-0	0,06	+62/-0	+0/-62		
	(1,968)	(0,017)	(+0/-0,002)	(0,17)	(+0,002/-0)	(0,002)	(+0,002/-0)	(+0/-0,002)		
50	120	0,46	+0/-0,07	0,46	+0,07/-0	0,08	+87/-0	+0/-87		
(1,968)	(4,724)	(0,018)	(+0/-0,003)	(0,018)	(+0,003/-0)	(0,003)	(+0,003/-0)	(+0/-0,003)		
120	250	0,48	+0/-0,10	0,48	+0,10/-0	0,11	+115/-0	+0/-115		
(4,724)	(9,842)	(0,019)	(+0/-0,004)	(0,019)	(+0,004/-0)	(0,004)	(+0,004/-0)	(+0/-0,004)		
250	500	0,51	+0/-0,12	0,51	+0,12/-0	0,15	+155/-0	+0/-155		
(9,842)	(19,685)	(0,020)	(+0/-0,005)	(0,020)	(+0,005/-0)	(0,006)	(+0,006/-0)	(+0/-0,006)		
500	800	0,53	+0/-0,15	0,53	+0,15/-0	0,20	+200/-0	+0/-200		
(19,685)	(31,496)	(0,021)	(+0/0,006)	(0,21)	(+0,006/-0)	(0,008)	(+0,008/-0)	(+0/-0,008)		
800	1000	0,56	+0/-0,18	0,56	+0,18/-0	0,23	+230/-0	+0/-230		
(31,496)	(39,370)	(0,022)	(+0/-0,007)	(0,022)	(+0,007/-0)	(0,009)	(+0,009/-0)	(+0/-0,009)		

*mm-Werte angegeben in 0,001 mm

Zulässiges Durchmesserspiel

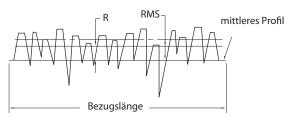
Extrusionsspalt

Die maximale Spaltbreite zwischen den Bauteilkomponenten muss möglichst klein gehalten werden, damit die Dichtung nicht in den Spalt gepresst wird und vorzeitig versagt. Abbildung 1 enthält typische Extrusionsbereiche für Stangen- und Kolbendichtungen. Tabelle 1 enthält die maximal zulässigen Werte in Abhängigkeit von Systemdruck und benutztem Werkstoff. Bei Spaltbreiten, die größer als die Werte in Tabelle 1 sind, wird ein Anti-Extrusionsring empfohlen.

TABELLE 1

IADELLE I										
		DRUCK ge	egen MAXIM	AL ZULÄSSI	GES DURCH	MESSERSPIE	L mm (ZoII)			
		Druck bar (psi)								
Werkstoff	100 (1450)	200 (2900)	300 (4350)	400 (5800)	500 (7250)	600 (8700)	700 (10150)	800 (11600)	900 (13050)	1000 (14500)
AWC800, 860	0,75 (0,030)	0,75 (0,030)	0,51 (0,020)	0,38 (0,015)	0,32 (0,013)	0,25 (0,010)	0,23 (0,009)	0,19 (0,007)	0,15 (0,006)	0,10 (0,004)
AWC830	0,74 (0,029)	0,56 (0,022)	0,32 (0,013)	0,15 (0,006)	0,13 (0,005)					
AWC700, 701, 727, 742	0,70 (0,028)	0,44 (0,017)	0,23 (0,009)							
PTFE Werkstoffe*	0,43 (0,017)	0,33 (0,013)	0,23 (0,009)	0,18 (0,007)	0,13 (0,005)	In der Abteilung Engineering nachfragen.			en.	
PEEK Werkstoffe AWC630, 635	1,90 (0,075)	1,90 (0,075)	1,27 (0,050)	1,00 (0,039)	0,84 (0,033)					
UHMWPE Werkstoffe AWC610, 615, 620, 625	0,75 (0,030)	0,75 (0,030)	0,51 (0,020)	0,38 (0,015)	0,32 (0,013)					

^{*}PTFE-Werkstoffe umfassen AWC100, AWC220, AWC300, AWC400, AWC440, AW500, AWC510, AWC520, AWC530, AWC550 PEEK* ist eine Schutzmarke von Victrex plc. Für Bedingungen außerhalb der empfohlenen Werte in der Abteilung Engineering nachfragen.


Oberflächengüte

Die Oberflächengüte oder -rauhheit ist ein Maß für die Unregelmäßigkeiten (Höhen und Tiefen) auf einer Dichtungsfläche, die vom Fertigungsverfahren abhängt, das zum Herstellen der Oberfläche eingesetzt wurde. Die Einhaltung der empfohlenen Gütebereiche kann einen beachtlichen Einfluss auf die Leistung der Dichtung haben, indem die Auswirkungen von Reibung beschränkt und Dichtungsabrieb verringert werden. Eine optimale Oberflächenbeschaffenheit hat die ideale Taschentiefen, um einen ausreichenden, dünnen Schmierfilm zwischen Dichtung und Oberfläche aufrecht zu erhalten und dadurch Reibung und Dichtungsverschleiß zu verringern. Wenn die Oberfläche zu rauh ist, wird sie die Dichtungsfläche abreiben und Rillen erzeugen, an denen Undichtigkeiten entstehen. Eine zu glatte Oberfläche erhöht die Reibung und der Verschleiß, da nicht ausreichend Schmiermittel anhaften kann, um eine Schmiermittelgrenzschicht zu bilden.

Die in ISO 4287 und ISO 4288 definierten Parameter werden ausgehend von der mittleren Profillinie gemessen, wie im Beispiel eines repräsentativen Oberflächenprofils in Abbildung 1 dargestellt. Die am häufigsten benutzten Werte Ra (Mittenrauhwert) und Rz (gemittelte Rauhtiefe) dienen zum Quantifizieren der Gesamtgröße des Profils und die Werte R (max. Rauhtiefe inerhalb einer Bezugsstrecke), Rmax (max. Rauhtiefe), R (max. mittlere Rauhtiefe innerhalb der Gesamtmessstrecke), und Rmr (Ausmaß des Oberflächenkontakts auf einer Null-Bezugslinie) werden zum Beschreiben der Beschaffenheit von Tälern und Spitzen herangezogen. Abbildung 2 zeigt ein Beispiel, wie die Beschaffenheit eines Oberflächenprofils mit der gleichen Profilhöhe insgesamt (Roder RMS) wie Abbildung 1 unterschiedlich sein kann. Tabelle 1 enthält übliche Industrienormen für Oberflächengütewerte.

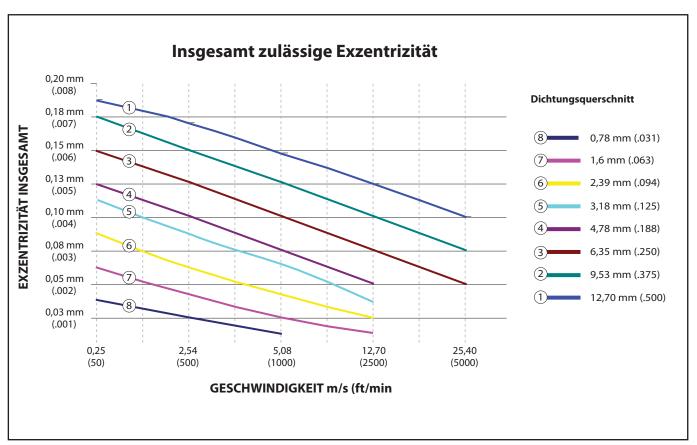
TABELLE 1


EMPFOHLENE OBERFLÄCHENGÜTEN FÜR CHESTERTON-WERKSTOFFE							
Werkstoff	Statisch μm R _a (μin R _a)	Dynamisch μm R _a (μin R _a)	Umrechnungsfaktoren				
AWC800, 860	0,76 – 1,17 μm (30 – 46 μin)	0,20 – 0,61 μm (8 – 24 μin)	1 μin = 0,0254 μm 1 μm = 39,37 μin				
AWC805	0,76 – 1,42 μm (30 – 56 μin)	0,20 – 1,17 μm (8 – 46 μin)	$R_q \approx R_a + 10 - 30 \%$				
AWC830	0,81 – 1,17 μm (32 – 46 μin)	0,20 – 0,61 μm (8 – 24 μin)					
AWC700, 701, 727, 742, 743, 750	0,81 – 1,17 μm (32 – 46 μin)	0,20 – 0,61 μm (8 – 24 μin)					
PTFE Werkstoff*	0,4 – 0,8 μm (16 – 32 μin)	0,2 – 0,4 μm (8 – 16 μin)					
PEEK Werkstoff AWC630, 635	0,4 – 0,8 μm (16 – 32 μin)	0,2 – 0,4 μm (8 – 16 μin)					
UHMWPE Werkstoff AWC610, 615, 620, 625	0,4 – 0,8 μm (16 – 32 μin)	0,2 – 0,4 μm (8 – 16 μin)					

Werkstoffe umfassen AWC100, AWC220, AWC300, AWC400, AWC440, AWS00, AWC510, AWC520, AWC530, AWC550 PEEK ist eine Schutzmarke von Victrex, plc.

Exzentrizität und dynamischer Schlag für federvorgespannte Dichtungen

Alle drehenden Wellen weisen ein bestimmtes Ausmaß an Unrundheit (Schlag) oder Fehlausrichtung in der Bohrung auf, die beim Betrieb für Exzentrizität sorgen. Das Ausmaß der Abweichung kann einen entscheidenden Einfluss auf die Leistung der Dichtung haben, besonders bei federvorgespannten Dichtungen mit Mänteln aus PTFE und technischen Kunststoffen. Im Folgenden sind die beiden Komponenten dargestellt, statische Fehlausrichtung und dynamischer Schlag, die gemeinsam die gesamte Exzentrizität ergeben.


Bohrungsachse Wellenschwingung Wellenachse

Statisch: Fehlausrichtung von Welle und Bohrung

Die Fehlausrichtung tritt auf, wenn die Wellenachse von der Bohrungsachse versetzt ist und einen asymmetrischen Spalt erzeugt (z. B. die Welle ist in der Bohrung nicht zentriert). Das führt zu erhöhter Komprimierung und Verschleiß der Dichtung an einer Seite und einem breiteren Auspressspalt an der andere Seite.

Dynamisch: Schlag (T.I.R.)

Wellenschlag tritt auf, wenn die Drehachse der Welle nicht mit der Wellenachse übereinstimmt; das führt zum Schwingen der sich drehenden Welle. Die Auswirkung auf die Dichtung ist zyklische Komprimierung/Dehnung und bescheunigter Verschleiß an einer Seite der Dichtung.

Bezugsmaterial-Liste für Einschränkungen.

FLUOROPLASTE

FLUUKUP			
Werkstoffin	formationen		
Werkstoff- code	Werkstoff	Allgemeiner Einsatz	Farbe
AWC100	Polyimidgefülltes PTFE, AWC 100	Trockenlaufende Anwendungen oder Anwendungen auf Erdölbasis mit niedriger Viskosität. Höchster PV-Wert, mechanische Beständigkeit und kann bei erhöhter Temperatur mit ausgezeichneter Flüssigkeitverträglichkeit verwendet werden.	Dunkelgelb
AWC220	Glasfasergefülltes modifiziertes PTFE	Bessere verschleißhemmende Eigenschaften und geringere Reibung im Vergleich zu herkömmlichem PTFE. Gut, wenn besonders saubere Umgebungen erforderlich sind. Eignet sich gut für abreibende und hochviskose Medien. Weniger abreibend auf Gleitflächen als kohlegefüllte PTFE-Werkstoffe.	Schmutzig- Weiß
AWC300	Glasfaser- + MoS₂- gefülltes PTFE	Anwendungen bei hohem Druck und bei hoher Geschwindigkeit. Hohe PV-Werte mit ausgezeichneter Verträglichkeit mit Flüssigkeiten. Ausgezeichnet in hochviskosen Flüssigkeiten.	Dunkelgrau
AWC400	Kohle-/Grafitgefülltes PTFE	Wasser- und Dampfanwendungen. Hohe PV-Werte. Ausgezeichneter Allzweckwerkstoff für rotierende Anwendungen. Gute elektrische Leitfähigkeit.	Schwarz
AWC440	Kohle-/Grafitgefülltes modifiziertes PTFE	Hohe Abriebbeständigkeit in Wasser- und Dampfanwendungen. Gut in trockenen und Druckluftanwendungen. Ausgezeichnete chemische Beständigkeit. Größter pH-Wertebereich, HsS und Lösungsmittel.	Schwarz
AWC500	40 % bronzegefülltes PTFE	Gute Lagereigenschaften und Widerstand gegen Extrusion. Bronze bietet bessere Temperaturleitfähigkeit und ermöglicht höhere Betriebsgeschwindigkeiten. Chemische Beständigkeit ist etwas geringer, da Bronze von einigen Säuren und Laugen angegriffen wird. Bestens geeignet für Hochdruck-Hydraulikanlagen.	Hellbraun
AWC510	Mineralgefülltes PTFE (FDA)	Von der FDA angeführter Werkstoff mit besserer Abriebbeständigkeit als ungefülltes PTFE. Ausgezeichnet, wenn besonders saubere Umgebungen erforderlich sind.	Weiß
AWC520	Virgin PTFE (FDA)	Statische Anwendungen oder Anwendungen mit geringer Geschwindigkeit mit geringer Verschleißfestigkeit. Eignet sich gut für Vakuumanwendungen und Anwendungen mit niedriger Gaspermeabilität. Ausgezeichnete Verträglichkeit mit Flüssigkeiten.	Weiß
AWC530	Ekonol®-gefülltes PTFE	Gute Verschleiß- und Hitzebeständigkeit. Einsatz bei Hochvakuum und dynamischen Bedingungen für Anwendungen mit mäßiger Geschwindigkeit und höherem Druck. Nicht-wässerige Anwendungen mit hoher Temperatur.	Creme
AWC550	60 % bronzegefülltes modifiziertes PTFE	Ausgezeichnete Lagereigenschaften und Widerstand gegen Extrusion, sowie verbesserte Verschleißbeständigkeit. Gute Temperaturleitfähigkeit ermöglicht höhere Geschwindigkeiten; beschränkte Chemikalienbeständigkeit gegenüber einigen Säuren und Laugen. Bestens geeignet für Hochdruck-Hydraulikanlagen.	Braun

Ekonol® ist eine Schutzmarke der Carborundum Company

Härte	Zugfestigkeit	Bruchdehnung	Temperatur	Einschränkungen	Werkstoff- code
60 Shore D +/-5	17,3 Mpa (2.500 psi)	200 %	-100 bis 260 °C (-148 bis 500 °F)	Nicht für Wasser und Dampf empfehlenswert.	AWC100
62 Shore D +/-5	24,1 Mpa (3.492 psi)	373 %	-100 bis 260 °C (-148 bis 500 °F)	Kann an weichen Gleitflächen schleifend wirken.	AWC220
65 Shore D +/-5	18,3 Mpa (2.650 psi)	265 %	-100 bis 260 °C (-100 bis 500 °F)	Schleifend wirkend an Weichmetallen in dynamischen Hochdruckanwendungen.	AWC300
62 Shore D +/-5	17,3 Mpa (2.500 psi)	200 %	-100 bis 260 °C (-148 bis 500 °F)	Kann schleifend wirken.	AWC400
65 Shore D +/-5	21,3 Mpa (3.087 psi)	296 %	-100 bis 260 °C (-148 bis 500 °F)	Kann schleifend wirken.	AWC440
62 Shore D +/-5	22,8 Mpa (3.307 psi)	250 %	-100 bis 260 °C (-150 bis 500 °F)	Beschränkte chemische Beständigkeit. Beschränkter Geschwindigkeitsbereich.	AWC500
65 Shore D +/-5	19,3 Mpa (2.799 psi)	250 %	-100 bis 260 °C (-148 bis 500 °F)	Begrenzte Verschleißfestigkeit.	AWC510
62 Shore D +/-5	24,2 Mpa (3.500 psi)	350 %	-150 bis 232 °C (-238 bis 450 °F)	Mangelhafter Verschleißwerkstoff und Kriechwiderstand.	AWC520
62 Shore D +/-5	19,33 Mpa (2.800 psi)	250 %	-100 bis 260 °C (-148 bis 500 °F)	Beschränkter Einsatz mit Wasser und Dampf.	AWC530
65 Shore D +/-5	17,0 Mpa (2.472 psi)	259 %	-100 bis 260 °C (-148 bis 500 °F)	Beschränkte chemische Beständigkeit. Beschränkter Geschwindigkeitsbereich.	AWC550

ELASTOMERE

Werkstoffinf	ormationen		
Werkstoff- code	Beschreibung (Abkürzung)	Allgemeiner Einsatz	Farbe
AWC700	Fluorelastomer FKM	Beste Hitzebeständigkeit und Verträglichkeit mit aggressiven Flüssigkeiten, wie Phosphatester, synthetische Hydraulikflüssigkeiten, viele Chemikalen und organische Lösungsmittel. Sehr gute Beständigkeit gegen Ozon, Witterung und Alterung. Moderate Verschleiß- und Einreißfestigkeit.	Schwarz
AWC701	Fluorelastomer FKM	Beste Hitzebeständigkeit und Verträglichkeit mit aggressiven Flüssigkeiten, wie Phosphatester, synthetische Hydraulikflüssigkeiten, viele Chemikalen und organische Lösungsmittel. Sehr gute Beständigkeit gegen Ozon, Witterung und Alterung. Moderate Verschleiß- und Einreißfestigkeit.	Braun
AWC715	Fluorelastomer FKM (FDA)	O-Ring-Werkstoff: Beste Verträglichkeit mit aggressiven Flüssigkeiten, wie Phosphatester, synthetische Hydraulikflüssigkeiten, viele Chemikalen und organische Lösungsmittel. Sehr gute Beständigkeit gegen Ozon, Witterung und Alterung.	Schwarz
AWC727	Fluorelastomer TFE	Ausgezeichnete Hitzebeständigkeit. Verträglich mit Dampf/heißem Wasser; Betriebsbereich zwischen -10°C und 170°C (14°F – 338°F). Beste Verträglichkeit mit Phosphatestern, Aminen, Motorölen, Papier- und Zellstofflaugen sowie hoch konzentrierten Säuren/Laugen/Oxidationsmitteln.	Schwarz
AWC730	Fluorelastomer FKM	O-Ring-Werkstoff: Beste Hitzebeständigkeit und Verträglichkeit mit aggressiven Flüssigkeiten, wie Phosphatester, synthetische Hydraulikflüssigkeiten, viele Chemikalen und organische Lösungsmittel. Sehr gute Beständigkeit gegen Ozon, Witterung und Alterung. Moderate Verschleiß- und Einreißfestigkeit.	Schwarz
AWC740	Acrylonitril-butadien- Gummi NBR	O-Ring-Werkstoff: Gutes Allzweck-Elastomermaterial. Verträglich mit Kohlenwasserstoffbasierten Flüssigkeiten, Laugen und Säuren. Geringe Permanentabsetzung und gute Elastizität.	Schwarz
AWC741	Acrylonitril-butadien- Gummi NBR (FDA)	Guter Allzweck-Elastomerwerkstoff. Verträglich mit Kohlenwasserstoff-basierten Flüssigkeiten, Laugen und Säuren. Geringe Permanentabsetzung und gute Elastizität.	Weiß
AWC742	Acrylonitril-butadien- Gummi NBR	Guter Allzweck-Elastomerwerkstoff. Verträglich mit Kohlenwasserstoff-basierten Flüssigkeiten, Laugen und Säuren. Geringe Permanentabsetzung und gute Elastizität. Ölbeständiger, preiswerter Werkstoff. Ölbeständiger, preiswerter Werkstoff.	Schwarz
AWC750	Ethylen-propylen- dien-monomer- Gummi EPDM	O-Ring-Werkstoff: Guter Allzweck-Elastomerwerkstoff für niedrige Temperaturen. Verträglich mit Wasser, Dampf und Flüssigkeiten auf Phosphatesterbasis. Ausgezeichnete Stabilität gegen UV-Strahlen.	Schwarz
AWC800	Thermoset- Polyurethan EU	Ausgezeichnete Verschleiß- und Einreißfestigkeit mit geringer Druckabsetzung. Verträglich mit den meisten Hydraulikflüssigkeiten, außer synthetische. Ausgezeichneter Widerstand gegen Extrusion bei hohem Druck. Ausgezeichnete Leistungen in Hydraulik- und Pneumatikanwendungen sowie Anwendungen mit langsamer Rotation.	Rot
AWC805	Thermoset- Polyurethan EU	Gute Verschleiß- und Einreißfestigkeit und geringe Drucksetzung. Verträglich mit den meisten Hydraulikflüssigkeiten, außer synthetische. Gut für Anwendungen in leicht gerieften oder abgenutzten Anlagen.	Blau
AWC830	Thermoset- Polyurethan EU (FDA-Genehmigung	Für Nahrungsmittel- und Pharmazeutika-Anwendungen, bei denen von der FDA angeführte Werkstoffe vorgeschrieben sind.	Weißgrau
AWC860	Thermoset- Polyurethan EU	Einsatz bei höheren Temperaturen. Ausgezeichnete Verschleiß- und Einreißfestigkeit mit geringer Druckabsetzung. Verträglich mit den meisten Hydraulikflüssigkeiten, außer synthetische. Ausgezeichnete Leistungen in Hydraulik- und Pneumatikanwendungen sowie Anwendungen mit langsamer Rotation. Ausgezeichneter Widerstand gegen Extrusion bei hohem Druck.	Kirschrot

Härte	Zugfestigkeit	Bruchdehnung	Temperatur	Einschränkungen	Werkstoff- code
88 Shore A	14,57 Mpa (2.110 psi)	134 %	-30 bis 200 °C (-22 bis 400 °F)	Nicht beständig gegen Wasser, Dampf, Gykole, Ketone und Flüssigkeiten mit Aminen.	AWC700
85 Shore A	>10,0 Mpa (1.450 psi)	>200 %	-30 bis 200 °C (-22 bis 400 °F)	Nicht beständig gegen Wasser, Dampf, Gykole, Ketone und Flüssigkeiten mit Aminen.	AWC701
75 Shore A	16,6 Mpa (2.408 psi)	311 %	-30 bis 200 °C (-20 bis 400 °F)	Nicht beständig gegen Wasser, Dampf, Gykole, Ketone und Flüssigkeiten mit Aminen.	AWC715
85 Shore A	7,2 Mpa (1.040 psi)	236 %	-10 bis 220 °C (14 bis 428 °F)	Nicht chemisch beständig gegen Gykole, Ketone und Flüssigkeiten mit Aminen.	AWC727
75 Shore A	13,76 Mpa (1.996 psi)	200 %	-30 bis 20 0°C (-20 bis 400 °F)	Nicht beständig gegen Wasser, Dampf, Gykole, Ketone und Flüssigkeiten mit Aminen.	AWC730
70 Shore A	17,1 Mpa (2.476 psi)	385 %	-30 bis 121 °C (-20 bis 250 °F)	Nicht chemisch beständig gegen Phosphatesterflüssigkeiten, starke Säuren und Kfz-Bremsflüssigkeiten.	AWC740
85 Shore A	15,0 Mpa (2.175 psi)	100 %	-35 bis 100 °C (-31 bis 212 °F)	Nicht chemisch beständig gegen Phosphatesterflüssigkeiten, starke Säuren und Bremsflüssigkeiten.	AWC741
85 Shore A	17,0 Mpa (2.460 psi)	100 %	-35 bis 100 °C (-31 bis 212 °F)	Nicht chemisch beständig gegen Phosphatesterflüssigkeiten, starke Säuren und Bremsflüssigkeiten.	AWC742
85 Shore A	13,9 Mpa (2.022 psi)	130 %	-55 bis 150 °C (-67 bis 302 °F)	Nicht chemisch beständig gegen Mineralölprodukte.	AWC750
95 Shore A	34,5 Mpa (5.000 psi)	400 %	-50 bis 85 °C (-58 bis 185 °F)	Nicht chemisch beständig gegen heißes Wasser/Dampf und starke Säuren und Laugen.	AWC800
85 Shore A	30,4 Mpa (4.400 psi)	580 %	-50 bis 85 °C (-40 bis 185 °F)	Nicht chemisch beständig gegen heißes Wasser/Dampf und starke Säuren und Laugen.	AWC805
94 Shore A	53,86 Mpa (7.800 psi)	430 %	-35 bis 75 °C (-31 bis 167 °F)	Nicht chemisch beständig gegen heißes Wasser/Dampf und starke Säuren und Laugen.	AWC830
95 Shore A	42,6 Mpa (6.180 psi)	540 %	-50 bis 120 °C (-58 bis 248 °F)	Nicht chemisch beständig gegen heißes Wasser/Dampf und starke Säuren und Laugen.	AWC860

TECHNISCHE KUNSTSTOFFE

Werkstoffin	formationen		
Werkstoff- code	Beschreibung (Abkürzung)	Allgemeiner Einsatz	Farbe
AWC600	Polyester TPE	Anwendungen, die hohe Einreißfestigkeit sowie hohe Beständigkeit gegen Kriechen und Abrieb erfordern. Etwas elastisch. Gut gegen rauhere Oberflächenbeschaffenheit.	Schwarz
AWC610	Nicht verstärktes Polyethylen mit extrem hohem Molekular- gewicht UHMWPE (FDA)	Hohe Abriebbeständigkeit in Anwendungen mit Reziprokalbewegungen oder langsamer Rotation. Ausgezeichnet in Flüssigkeiten auf Wasserbasis. Preiswert und ausgezeichnet für Tieftemperaturanwendungen.	Durchsichtig Weiß
AWC615	Hochtemperatur- Polyethylen mit extrem hohem Molekular- gewicht UHMWPE (FDA)	Verschleiß- und Abriebbeständigkeit. Gut in trockenen Anwendungen. Ausgezeichnete chemische Beständigkeit. Großer pH-Wertebereich und Lösungsmittel. Ausgezeichnet für Tieftemperaturanwendungen. Gute obere Temperaturgrenze.	Durchsichtig Weiß
AWC620	Prämium eisenoxidver- stärktes Polyethylen mit extrem hohem Moleku- largewicht UHMWPE	Bessere Verschleiß- und Abriebbeständigkeitseigenschaften als unverstärktes UHMWPE. Anwendungen mit Linearbewegung oder langsamer Rotation. Ausgezeichnet in Flüssigkeiten auf Wasserbasis.	Durchsichtig Weiß
AWC625	Glasfaserverstärktes Polyethylen mit extrem hohem Molekular- gewicht UHMWPE	Reibende Anwendungen mit hohem Verschleiß, Linearbewegung oder langsamer Rotation. Ausgezeichnet in Flüssigkeiten auf Wasserbasis, chemische Verträglichkeit und oberer Temperaturbereich sind jedoch begrenzt.	Durchsichtig Gelb
AWC630	Nicht verstärktes Poly- etheretherketon PEEK	Bessere Verschleißeigenschaften. Zäh, zuverlässig und dimensionsstabil auch bei langfristig erhöhten Temperaturen. Ausgezeichnete Verschleißfestigkeit für Dichtungen und Lager. Druckstärke 124 MPa (18.000 psi).	Beige
AWC635	Glasfaserverstärktes Polyetheretherketon PEEK	Verbessert die Verschleißrate von ungefülltem PEEK (AWC630) bei Hochleistungs- anwendungen. Zäh, zuverlässig und dimensionsstabil auch bei langfristig erhöhten Temperaturen. Guter Stützring-Werkstoff in Stützring-Anwendungen.	Beige
AWC650	Polyoxymethylen (Acetal) POM (FDA)	Anti-Extrusionsringe oder Anwendungen mit moderater Lagerbelastung. Ausgezeichnete Beständigkeit gegen Kriechen bei Dauerlast und Ermüdungsfestigkeit bei wiederholter zyklischer Belastung. Druckstärke 55,2 MPa (8.000 psi).	Weiß oder Schwarz
AWC660	Polyamid (Glasfaser- verstärktes Nylon)	Ausgezeichnete Verschleißfestigkeit und Lagerbelastung. Geringe Flüssigkeits- absorption und Reibung. Druckstärke 158,8 MPa (23.000 psi).	Schwarz
AWC663	Polyamid Nylon	Guter Allzweck-Polyamidwerkstoff. Lagerwerkstoff. Druckstärke 90-100 MPa (13.050-14.500 psi).	Weißgrau
AWC665	Polyamid mit MoS ₂ - Nylon	Bessere Verschleißeigenschaften mit MoS_2 als nicht verstärkter Werkstoff. Lagerwerkstoff. Druckstärke 100-110 MPa (14.500-15.950 psi).	Schwarz

PEEK® ist eine Marke von Victrex, plc.

Härte	Zugfestigkeit	Bruch- dehnung	Temperatur	Einschränkungen	Werkstoff- code
55 Shore D +/-5	40,0 Mpa (4.802 psi)	500 %	-40 bis 110 °C (-40 bis 230) °F	Beschränkter Temperaturbereich.	AWC600
64 Shore D +/-5	38,7-48,33 Mpa (5.600-7.000 psi)	350-526 %	-200 bis 82 °C (-325 bis 180) °F	Beschränkter Temperatur- und Geschwindigkeitsbereich.	AWC610
64 Shore D +/-5	48,3 Mpa (7.000 psi)	242 %	-200 bis 110 °C (-325 bis 230) °F	Erhältlich in beschränkten Größen.	AWC615
64 Shore D +/-5	37,98 Mpa (5.500 psi)	300 %	-200 bis 82 °C (-325 bis 180) °F	Beschränkter Temperatur- und Geschwindigkeitsbereich.	AWC620
64 Shore D +/-5	34,52 Mpa (5.000 psi)	250 %	-200 bis 82 °C (-325 bis 180) °F	Beschränkter Temperatur- und Geschwindigkeitsbereich.	AWC625
126 Rockwell R +/-5	70,4-103,6 Mpa (10.200-15.000 psi)	5 %	-73 bis 249 °C (-100 bis 480) °F	Beschränkter Geschwindigkeitsbereich.	AWC630
124 Rockwell R +/-5	155,8 Mpa (22.600 psi)	2 %	-50 bis 249 °C (-60 bis 480) °F	Beschränkter Geschwindigkeitsbereich.	AWC635
116 Rockwell R +/-5	69 Mpa (10.000 psi)	30 %	-40 bis 90 °C (-40 bis 200) °F	Beschränkte chemische Beständigkeit und beschränkter Temperaturbereich.	AWC650
85 Shore D +/-5	172,6 Mpa (25.000 psi)	3 %	-40 bis 110 °C (-40 bis 230) °F	Beschränkte chemische Beständigkeit und beschränkter Temperaturbereich.	AWC660
84 Shore D +/-5	75-85 Mpa (10.875-12.325 psi)	>25 %	-40 bis 110 °C (-40 bis 230) °F	Beschränkte chemische Beständigkeit und beschränkter Temperaturbereich. Höhere Flüssigkeitsabsorption.	AWC663
84 Shore D +/-5	80-90 Mpa (11.600-13.050 psi)	>20 %	-40 bis 110 °C (-40 bis 230) °F	Höhere Flüssigkeitsabsorption.	AWC665

Flüssigkeit	PUR (EU)	PTFE (nicht verstärkt)	UHMW PE	NBR	FKM	PEEK®	Nylon (Nylon)	POM (Acetal)	Flüssigkeit	PUR (EU)	PTFE (nicht verstärkt)	UHMW PE	NBR	FKM	PEEK*	Nylon (Nylon)	POM (Acetal)
Acetoyd	NR	С	NR	NR	NR	С	С	С	ASTM ÖI #2	М	С		М	М			
Acetamid	NR	С	С	С	NR		С	С	ASTM ÖI #3	М	С		М	М			
Acetat-Lösungsmittel	NR	С	С	NR	NR		С		ASTM Referenzkraftstoff A	NR	С		М	М			
Essigsäure	NR	С	С	NR	NR	С	NR	NR	ASTM Referenzkraftstoff B	М	С		NR	М			
Essigsäure, 20 %	М	С	С	NR	NR		NR	М	Bariumcarbonat	М	С	М	С	М		С	С
Essigsäureanhydrid	NR	С	NR	NR	NR		С	NR	Bariumchlorid	М	С	С	С	С	С	С	C
Azeton	NR	С	М	NR	NR	С	М	С	Bariumcyanid		С	М	NR	С		С	М
Acetylbromid	NR	С		NR			NR		Bariumhydroxid	С	С	М	С	С		С	NR
Acetylchlorid	NR	С		NR	NR				Bariumnitrat	NR	С	М	С	С		С	М
Acetylen	NR	С	NR	C	С	С	С	C	Bariumsulfat	М	С	М	С	С		С	М
Acrylonitril	NR	С	С	NR	NR	С	С		Bariumsulfid	М	С	М	С	С	С	С	С
Adipinsäure	С	С	С	М	С				Benzaldehyd	NR	С	С	NR	NR	C	С	С
Aluminiumchlorid	М	С	М	С	С	С	М		Benzen (Benzin)	NR	С	NR	NR	NR	С	С	С
Aluminiumfluorid	NR	С	С	С	С		С	М	Benzensulfonsäure	NR	С	С	NR	NR		NR	
Aluminiumhydroxid	NR	С	С	С	С		С	С	Benzoesäure	NR	С	С	NR	С	С	NR	М
Aluminiumnitrat	NR	С	С	С	С		С	М	Benzol	NR	С	NR	NR	NR		NR	С
Alum. Kaliumsulfat		С	С	С	С		NR	М	Benzylalkohol	NR	С	NR	NR	С	С	М	С
Aluminiumsulfat	М	С	С	С	С	С	С	М	Borsäure	С	С	С	М	С	С	М	С
Aluminiumsulfid	М	С		С	С				Bromin	NR	С	NR	NR	NR	NR	NR	NR
Amine		С	NR	NR	NR		NR	NR	Butadien	NR	С	NR	NR	NR		М	С
Ammoniak/kalt	М	С		С	NR	С	NR		Butan	С	С	NR	С	С	С	С	С
Ammoniaknitrat		С	С	С	NR		NR	М	Butylacetat	NR	С	NR	NR	NR	С		
Ammoniak, wasserfrei	NR	С	М	NR	NR	С	С	NR	Butylalkohol	NR	С	С	С	С		NR	С
Ammoniak, flüssig	NR	С	NR	М	NR	С	М	NR	Butylen	NR	С	М	М	С		М	С
Ammoniumacetat	NR	С	С	М	С		С		Butylsäure	NR	С	NR	NR	NR		М	С
Ammoniumbifluorid		С	С	М	С			NR	Calciumbisulfid	NR	С	М	М	М	С	С	
Ammoniumcarbonat	М	С	М	NR	С		С	NR	Calciumcarbonat	М	С	М	С	С	С	С	С
Ammoniumchlorid	NR	С	С	NR	С	С	М	М	Calciumchlorid	С	С	М	С	С	С	С	NR
Ammoniumhydroxid	NR	С	С	NR	NR	С	С	М	Calciumhypochlorit, 5 %	NR	С	С	М	С	С		
Ammoniumnitrat	М	С	С	С	С	С	С	С	Calciumhydroxid	С	С	С	С	С	С	С	NR
Ammoniumpersulfat	М	С	С	NR	NR		NR	NR	Calciumnitrat	М	С		С	С	С	С	NR
Ammoniumsulfat	М	С	С	С	NR		С	М	Calciumoxid	NR	С	М	С	М		М	С
Ammoniumsulfid	М	С		С	NR				Calciumsulfat	М	С	М	С	С	С	NR	NR
Ammoniumthiocyanat	М	С		М	М				Kohlenstoffbisulfid	NR	-	-	NR	С		С	С
Amylacetat	NR	С	NR	NR	NR	С	М	М	Kohlendioxid	С	С	С	С	NR	С		
Amylalkohol	NR	С		М	М		С	С	Kohlendioxid (trocken)	Α	С	С	С	С	С	С	С
Amylchlorid	NR	С	NR	NR	С		М	С	Kohlendioxid (nass)	NR	С	С	С	NR		С	С
Anilin	NR	С	NR	NR	М	С	С	С	Kohlenstoffdisulfid	NR	С	NR	NR	С		М	С
Anilinhydrochlorid	NR	С	NR	NR	NR		NR		Kohlenmonoxid	С	С	С	С	С	С	С	С
Tierische Fette	М	С		М	М	С			Kohlenstofftetrachlorid	NR	С	NR	М	С	С	NR	М
Antimonsalze	М			М	М	С			Kohlensäure	М	С	М	NR	С	С	С	М
Antimontrichlorid	NR	С	М	NR	С	С	NR		Rizinusöl	С	С		С	С			
Königswasser	NR	С	М	NR	М	NR	NR	NR	Chlorierter Klebstoff	NR	-	-	М	С	NR		NR
Aromatische Kohlenwasserstoffe	NR		NR	NR	С	С		С	Chlor	NR	С	NR	NR	С	NR	NR	С
Arsensäure	NR	С	М	С	С		М	NR	Chloressigsäure	NR	С		NR	NR	С	NR	NR
Arsensalze	С				NR		С		Chlorbenzen (Mono)	NR	М	NR	NR	С	С	NR	NR
ASTM ÖI #1	С	С		М	М				Chloroform	NR	С	NR	NR	С	С	С	С

VERTRÄGLICHKEITSEINSTUFUNG: CVerträglich NR...........

......Nicht empfehlenswert **M**.....Im Allgemeinen nicht empfehlenswert

PEEK® ist eine Marke von Victrex, plc.

Die Richtlinien für Flüssigkeitsverträglichkeit dienen nur zur Bezugnahme. Es müssen praktische Tests durchgeführt werden, ob der Werkstoff für die Flüssigkeit und Anwendung geeignet ist. Die Ergebnisse können auf Grund unterschiedlicher Bedingungen, einschließlich Temperatur, Konzentration, Mischungen und anderen Faktoren, verschieden sein.

Flüssigkeit	PUR (EU)	PTFE (nicht verstärkt)	UHMW PE	NBR	FKM	PEEK®	Nylon (Nylon)	POM (Acetal)	Flüssigkeit	PUR (EU)	PTFE (nicht verstärkt)	UHMW PE	NBR	FKM	PEEK®	Nylon (Nylon)	POM (Acetal)
Chlorsulfonsäure	NR	С	NR	NR	NR	NR	NR	NR	Ethylenoxide	NR	С	С	NR	NR	С	С	NR
Chromsäure	NR	С	NR	NR	М	NR	NR	NR	Fettsäuren	NR	С	NR	M	С	С	С	С
Chromkaliumsulfat	М	С		М	М				Eisenchlorid	М	С	С	C	С	М	С	NR
Zitronensäure	М	С	NR	С	С	С	С	М	Eisennitrat	М	С	С	C	С	С	С	NR
Clorox (Bleiche)		С	-	NR	С	С	С	NR	Eisen-III-sulfat	NR	С	С	C	С	С	С	NR
Kupferchlorid	NR	С	-	С	С	С	NR	С	Eisenchlorid	М	С	С	C	С	С	NR	NR
Kupfercyanid	М	С	М	С	С	С	NR	С	Eisensulfat	М	С	С	C	М	С	NR	NR
Kupferfluorborat		-	-	NR	С			М	Fluor	NR	NR	NR	NR	NR	NR	NR	NR
Kupfernitrat	NR	С	М	С	С	С	NR	С	Fluorborsäure		С	С				NR	С
Kupfersulfat 5 %		С	С	С	С	С	NR	NR	Fluorsiliziumsäure	NR	С	С	C	М		NR	С
Kupfersulfat >5 %	NR	С	С	С	С	С	NR	NR	Formaldehyd	NR	С		NR	NR	С		
Baumwollöl	С	С		С	С				Formaldehyd 40 %	NR	С	NR	M	С	С	С	С
Cresol (Meta)	NR	NR	NR	NR	М		NR	NR	Formaldehyd 100 %	NR	С	М	NR	NR	С	NR	С
Cresylsäure	NR	С	М	NR	С		NR	NR	Ameisensäure	NR	С	NR	NR	NR	М	NR	С
Kupferchlorid	С	С		NR	М				Freon 11	NR	С	NR	NR	NR			
Kupfernitrat	М	С		М	М				Freon 12	С	С	С	М	NR	С	С	М
Kupfersulfat	М	С		М	М	С			Freon 22	NR	С	-	NR	NR	С	М	С
Cyclohexanon	NR	С	NR	NR	NR	С	С	С	Freon 113	NR	С	-	C	NR	С		С
Cyclohexan	М	С	М	С	С	С	С	С	Freon Tf	NR	С	-	C	NR		NR	С
Detergenzien	NR	С	NR	М	С	С		С	Fruchtsaft	М	С	С	C	С	С	С	NR
Diacetonalkohol	NR	С	М	NR	NR		С	С	Furfural	NR	С	NR	NR	NR		М	С
Dibutylether	М	С		NR	NR				Gallussäure	NR	М	С	NR	С		С	
Dibutylphthalat	NR	С		NR	NR	С			Gelatin	NR	С	С	C	С	С	С	М
Dichlorethan	NR	С	NR	NR	NR	С	С	С	Glukose	NR	С	С	C	С		С	С
Dieselkraftstoff	NR	С	NR	С	С	С	С	NR	Klebstoff, Pva	М	С	С	C	М		С	С
Diethylether	М	С	-	NR	NR	С	С		Glycerin	NR	С	С	C	С		С	С
Diethylamin	NR	NR	NR	NR	NR	С	С	М	Glycerin (Glycerol)	С	С		C	С	С		
Diethylenglykol	NR	С	М	С	С		С	С	Glykolsäure	М	С	С	NR	NR			С
Dimethylacetamid	NR	С							Propylenglykol	М	С		М	С			М
Dimethylformamid	NR	NR	С	NR	NR	С	С	NR	Benzin	М	NR	С	C	С	С	С	С
Diphenyloxid	NR	С	-	NR	С			NR	Fette	С	С	-	С	С			NR
Dodecylmercaptan	М	С							Hydraulikflüssigkeiten (DIN 51524)								
Epsonsalze	NR	С	С	С			С	М	HETG (auf Pflanzenölbasis)								
Ethan	NR	С	_	С	С	С	NR	С	Umweltverträgliche Flüssigkeiten	С	С	С	C	С	C	С	С
Ethanol	NR	С	М	NR	NR	С	С	С	HEES (synthetische Esterbasis) Umweltverträgliche Flüssigkeiten	Ι ,,			М	С	С	С	С
Ethanolamin	NR	С	_	М	NR		С	NR	HEPG (Polyglykolbasis)	M	С		IVI	C	C		C
Ether	М	С	NR	NR	М		С	С	Umweltverträgliche Flüssigkeiten	М	С		M	М	С	С	С
Ethylazetat	NR	С	NR	NR	NR	С	С	С	Hydraulikflüssigkeiten (ISO 6743-/4)								
Ethylalkohol	NR	С	М	М			С	С	HL, HM, HV	С	С		C	С	С	С	С
Ethylbenzoat	NR	С	NR	NR	С				HFA-E (5/95,Öl-Wasser-Emulsion)								
Ethylbromid	NR	С		М	С				Brandbeständige Flüssigkeiten	С	С		C	С	С	С	С
Ethylchlorid	NR	С	NR	С	С		С	С	HFB (60/40, Wasser-Öl-Emulsion) Brandbeständige Flüssigkeiten	NR	С		С	С	С	С	С
Ethylenchlorid	NR	С	NR	С	С		С	С	HFC (Wasser/Glykol)	1417							
Ethylenchlorohydrin	NR	С	NR	NR	С		NR	NR	Brandbeständige Flüssigkeiten	NR	С		NR	NR	С	С	С
Ethylendiamin	NR	C	C	NR	NR		NR	NR	HFD (rein synthetische Flüssigkeiten)		_					_	
Ethylendichlorid	NR	С	NR	NR	NR		С	M	Brandbeständige Flüssigkeiten	NR	С		NR	NR	С	С	С
Ethylenglykol	M	С	NR	С	С	С	С	M	HFD-R (Phosphatester) Brandbeständige Flüssigkeiten	NR	С		NR	С	С	М	М

VERTRÄGLICHKEITSEINSTUFUNG: CVerträglich

.....Nicht empfehlenswert **M**.....Im Allgemeinen nicht empfehlenswert

PEEK® ist eine Marke von Victrex, plc.

Die Richtlinien für Flüssigkeitsverträglichkeit dienen nur zur Bezugnahme. Es müssen praktische Tests durchgeführt werden, ob der Werkstoff für die Flüssigkeit und Anwendung geeignet ist. Die Ergebnisse können auf Grund unterschiedlicher Bedingungen, einschließlich Temperatur, Konzentration, Mischungen und anderen Faktoren, verschieden sein.

LEITFADEN FÜR FLÜSSIGKEITSVERTRÄGLICHKEIT¹

Flüssigkeit	PUR (EU)	PTFE (nicht verstärkt)	UHMW PE	NBR	FKM	PEEK®	Nylon (Nylon)	POM (Acetal)	Flüssigkeit	PUR (EU)	PTFE (nicht verstärkt)	UHMW PE	NBR	FKM	PEEK®	Nylon (Nylon)	POM (Acetal)
Heptan	С	С	М	М	С	С	С	С	Quecksilber	М	С	С	С	С	С	С	С
Hexan	С	С	NR	М	С	С	М	С	Methan	NR	С	-	С	С	С	С	С
Hexylalkohol	NR	С	С	NR	NR		С	С	Methanol	NR	С	С	NR	NR	С	М	С
Hydrazin	NR	NR		NR	NR	С		М	Methylacetat	NR	С	М	NR	NR		С	М
Hydrobromsäure	М	С		NR	С	NR			Methylacrylat	NR	-	-	NR	NR			М
Hydrobromsäure 20 %	NR	-	М	NR	С		NR	М	Methylalkohol	NR	С	С	NR	NR	С	М	С
Hydrobromsäure 100 %	NR	С	М	NR	С	NR	NR	NR	Methylcellosolv	NR	С	-	NR	NR		М	NR
Salzsäure	NR	С				С			Methylchlorid	NR	С	NR	NR	С	С	М	М
Salzsäure 20 %	М	С	С	NR	С	С	NR	М	Methyldichlorid		-	-	NR	М		М	NR
Salzsäure 100 %	NR	С	-	NR	NR	С	NR	М	Methylethylketon	NR	С	М	NR	NR	С	С	М
Hydrocyansäure	NR	С	С	NR	С	С	М	М	Methylisobutylketon	NR	С	NR	NR	NR		М	
Flusssäure 50 %	NR	С	С	NR	М	NR	NR	NR	Methylisopropylketon	NR	С	NR	NR	NR		С	
Flusssäure	NR	С	-	NR	NR	NR	NR	NR	Methylamin		С	С	М	NR			NR
Hydrofluorokieselsäure	NR	С	М	NR	С		NR	С	Methylenchlorid	NR	С	NR	NR	NR	С	М	М
Wasserstoff	М	С							Mineralöl	С	С		С	С	С		
Wasserstoffgas	М	С	С	С	С		С		Mineralbeizen	NR	С	М	С	С		С	С
Wasserstoffperoxid	М	С		М	С	С			Monoethanolamin	NR	С	NR	NR	NR		С	NR
Schwefelwasserstoff	NR	С	С	NR	NR		М	М	Naphtha	NR	М	С	М	С	С	С	С
Hydrolodsäure	М	-							Naphthalen	М	С	NR	NR	С	С	С	С
Hydroquinon		С	С	NR	NR		N	С	Erdgas	М	С		С	С	С		М
Hydroxyessigsäure 70 %	NR	С	С	М	С			С	Nickelchlorid	NR	С	С	С	С	С	М	С
lodlösung	NR	С	С	М	С	М		NR	Nickelsalze	NR	С		С	С	С		
Isooktan	М	С		С	С	С	С		Nickelsulfat	NR	С	С	С	С	С	С	С
Isobutylalkohol	NR	С	С	NR			С	С	Salpetersäure	NR	С		NR	NR	NR		
Isopropylazetat	NR	С	М	NR	NR		М	NR	Salpetersäure 50 %	NR	С	М	NR	С	NR	NR	NR
Isopropylalkohol	NR	С	С	М	М	С	NR	С	Nitrobenzen	NR	С	NR	NR	М	С	М	М
Isopropylether	М	С	М	NR	NR		С	NR	Salpetrige Säure		С	-	NR	С			
Kerosin	М	С	NR	С	С	С	С	С	Stickstoffoxid	NR	С	NR	С	С	С	М	
Ketone	NR	С	NR	NR	NR		С	NR	Octylalkohol	NR		С	NR	NR		С	С
Lackverdünner	NR	С	С	NR	NR		С	NR	Oleinsäure	М	С	NR	М	М	С	С	С
Milchsäure	М	С	С	С	С	С	М	М	Oleum 25 %	NR	С	NR	NR	М		NR	NR
Schweinefett	NR	С	С	С	С		С	С	Oleum 100 %	NR	С	NR	NR	NR	NR	NR	NR
Latex	NR	С	-	С	С		С	М	Oxalsäure (5 %)	С	С		М	С	С		
Bleiazetat	М	С	С	NR	NR	С	С	М	Sauerstoff	С	С		NR	С	С		
Bleisulfamat		М	С	М	С		М	С	Ozon	С	С	С	NR	С	С	NR	М
Ligroin	NR	С	С	С	С		NR	М	Palmitinsäure	С	С		С	С		С	С
Kalk	NR	С	С	С	С	С	С	М	Lacke	С-М	С		NR	NR			
Leinöl	М	С		М	М	С			Paraffin	М	С	М	М	М	С	С	С
Magnesiumcarbonat	NR	С	М	М	С			С	Pentan	NR	С	NR	С	С	С	С	М
Magnesiumchlorid	M	С	С	С	С	С	С	М	Perchlorsäure	NR	С	М	NR	С	С	NR	М
Magnesiumhydroxid	С	С	С	М	С	С	М	С	Perchlorethylen	NR	С	NR	М	С	С	М	М
Magnesiumnitrat	NR	С	С	С	С		С	С	Petrolatum	NR	NR	М	С	С		NR	М
Magnesiumsalze	M	C		С	С				Phenol (Karbolsäure)	NR	С		NR	NR		NR	NR
Magnesiumsulfat	NR	С	С	С	С	С	С	М	Phosphorsäure	NR	С	M	NR	С	С	M	NR
Malsäure	NR	C	М	NR	С	С	С	C	Phthalsäureanhydrid	М	С	-	NR	С	С	M	M
Melamin	NR	С	-	NR	С		С	С	Pikrinsäure	NR	С	С	NR	С	С	M	С
Quecksilbercyanid	IVII	М	С	C	С	С	С		Kalium	NR	-	С	С	С		С	М
Quecksiibeicyaliiu		141		_		1	_		Nation	''''	-				1	_	'*'

VERTRÄGLICHKEITSEINSTUFUNG: C

....Verträglich

NR....

......Nicht empfehlenswert **M**......Im Allgemeinen nicht empfehlenswert

PEEK® ist eine Marke von Victrex, plc.

Die Richtlinien für Flüssigkeitsverträglichkeit dienen nur zur Bezugnahme. Es müssen praktische Tests durchgeführt werden, ob der Werkstoff für die Flüssigkeit und Anwendung geeignet ist. Die Ergebnisse können auf Grund unterschiedlicher Bedingungen, einschließlich Temperatur, Konzentration, Mischungen und anderen Faktoren, verschieden sein.

Flüssigkeit	PUR (EU)	PTFE (nicht verstärkt)	UHMW PE	NBR	FKM	PEEK®	Nylon (Nylon)	POM (Acetal)	Flüssigkeit	PUR (EU)	PTFE (nicht verstärkt)	UHMW PE	NBR	FKM	PEEK*	Nylon (Nylon)	POM (Acetal)
Kaliumbicarbonat	NR	С	С	С	С	С	С	М	Natriumhypochlorit 100 %	NR	С	М	М	С	С	NR	NR
Kaliumbromid	NR	С	С	С	С	С	С	С	Natriummetaphosphat	NR	С	С	C	С		С	М
Kaliumchlorat	М	С	С	С	С	С	М	М	Natriummetasilicat	NR	С	-	C	С			NR
Kaliumchlorid	М	С	С	С	С	С	С	С	Natriumnitrat (Salpeter)	М	С	С	NR	С	С	С	С
Kaliumchromat	NR	С	С	С	С		М	М	Natriumperborat	NR	С	С	NR	С		М	М
Kaliumcyanid	С	С	С	С	С		С	М	Natriumperoxid	NR	С	С	NR	С	С	С	NR
Kaliumdichromat	NR	С	С	С	С	С	М	С	Natriumpolyphosphat		С	С	C	С		С	М
Kaliumeisencyanid	NR	С	С	NR	С	С	М		Natriumsilikat	М	С	С	С	С	С	С	М
Kaliumhydroxid	NR	С		NR	NR	С	М	С	Natriumsulfat	М	С	С	C	С	С	С	М
Kaliumnitrat	М	С	М	С	С	С	М	С	Natriumsulfid	М	С		С	С	С	С	М
Kaliumpermanganat	NR	С	С	NR	С	С	NR	С	Natriumtetraborit	NR	С	С	C	С		С	М
Kaliumsalze	М	С		С	С				Natriumthiosulfat (Hypo)		С	С	М	С		М	М
Kaliumsulfat	М	С	С	С	С	С	С	М	Sojabohnenöl	М	С		С	С			
Kaliumsulfid	М	С	С	С	С	С	С		Zinnchlorid	NR	С	С	С	С	С	М	М
Propan	М	С	NR	С	С	С	С	С	Zinn-(II)-Chlorid	NR	С	М	С	С	С	М	
Propylalkohol	NR	С	С	NR	С	С	NR	С	Stärke	Α	С	М	С	С	С	С	С
Propylenglykol	NR	С	М	С	С		С	М	Dampf	NR	С		NR	NR	С		
Pyridin	NR	С	М	NR	NR	С	М	М	Stoddard-Lösungsmittel	NR	С	NR	С	С		С	С
Pyrogallussäure	NR	С	-	NR	С			NR	Styren	М	С	-	NR	М		С	С
Harze	NR	С	М	С	С		С	М	Zucker (Flüssigkeiten)		С	_	С	С		С	С
Meerwasser	С	C	С	С	С		C	С	Sulfat (Laugen)	NR	C	С	NR	C		М	NR
Schellack (gebleicht)	NR	С	С	С	С		С	С	Schwefelchlorid	NR	С	NR	NR	С	С	С	NR
Kieselsäure	M	С		A	A	С			Schwefeldioxid	NR	C	1411	NR	С	С	М	M
Silikon	'''	С	_	C	C	С	С	С	Schwefeldioxid (trocken)	NR	С	С	NR	С		M	M
Skydrol-Öl (500)	NR	С		NR	NR				Schwefelhexafluorid	NR	_	М	NR	NR	С	M	141
Silberbromid	1411	С	С	NR	1414			М	Schwefeltrioxid	NR	С	-	NR	С	С	NR	
Silbernitrat	М	С	С	M	С	С	С	С	Schwefeltrioxid (trocken)	NR	C	NR	NR	C		C	NR
Seife	M	С	NR	С	С	С	С	С	Schwefelsäure 10-50 %	NR	С	1414	NR	NR	M		IVII
Natriumacetat	M	С	C	М	NR	С	M	М	Schwefelsäure 10-75 %	NR	C	С	NR	NR	NR	NR	NR
Natriumaluminat	141	С	_	C	С		С	M	Schwefelsäure 75-100 %	NR	С	М	NR	NR	NR	NR	IVIV
Natriumbikarbonat	М	С	С	С	С	С	С	C	Schwefelsäure <10 %	NR	C	C	INIX	C	M	M	NR
	M	C	С	С	С		C	М	Schwefelsäure (kalt konz.)	INIT	С	NR		С	IVI	NR	INIT
Natriumbisulfat Natriumborat	M	С	С	С	С		С	IVI	Schwefelsäure (heiß konz.)		C	NR		С		NR	
Natriumkarbonat	M	С	М	С	С	С	M	С	Schwefelige Säure	NR	С	M	NR	М	С	NR	М
Natriumchlorat	M	С	M	М	С	С	NR	С	Talg		С	NR	C	C	С	C	C
Natriumchlorid									Gerbsäure 10 %	A		INK	С				
	M	С	С	С	C	С	C	C		C	С			C	С		
Natriumchromat		С	-	С	С		M	NR	Gerblaugen	NR	С	С	NR	С	6	C	M
Natriumcyanid	M	С	С	C	C		С	С	Weinsäure	C	С	С	С	С	С	M	M
Natriumdichromat	M	C		A	A				Tetrachlorethan	NR	С	-	NR	С		M	С
Natriumeisencyanid	M	С		C	С			С	Tetrachlorethylen	NR	C	M	NR	C		С	С
Natriumfluorid	M	С	С	C	С		M		Tetrahydrofuran	NR	С	NR	NR	NR	С	С	С
Natriumhydrosulfit	M	С		NR	NR		С	_	Zinnsalze	M	С	-	С	С			
Natronlauge 20 %		С	NR	С	NR	С	С	С	Titansalze	М	-		NR	М			
Natronlauge 45 %	M	С			NR	С			Toluen	NR	С	NR	NR	С	С	С	М
Natronlauge 50 %		С	NR	NR	NR	С	С	С	Transformatoröl	М	С		С	С	С		
Natronlauge 80 %		С	NR	NR	NR		М	NR	Trichloressigsäure	NR	С	С	NR	NR		М	
Natriumhypochlorit 5%	NR	С			NR	C	NR	NR	Trichlorethan	NR	C	-	NR	C	C	М	C

VERTRÄGLICHKEITSEINSTUFUNG: C

.....Verträglich

 $\textbf{NR}......\text{Nicht empfehlenswert} \quad \textbf{M}.....\text{Im Allgemeinen nicht empfehlenswert}$

PEEK® ist eine Marke von Victrex, plc.

Die Richtlinien für Flüssigkeitsverträglichkeit dienen nur zur Bezugnahme. Es müssen praktische Tests durchgeführt werden, ob der Werkstoff für die Flüssigkeit und Anwendung geeignet ist. Die Ergebnisse können auf Grund unterschiedlicher Bedingungen, einschließlich $Temperatur, Konzentration, Mischungen \, und \, anderen \, Faktoren, \, verschieden \, sein.$

LETT FADEN FOR FLO	,33101	VLI I	JVL	NIM	JOL	CIII	LII	
Flüssigkeit	PUR (EU)	PTFE (nicht verstärkt)	UHMW PE	NBR	FKM	PEEK®		POM (Acetal)
Trichlorethylen	NR	C	NR	NR	С	С	М	NR
Trichlorpropan	М	С	-	NR	М			C
Trikresylphosphat	NR	C	М	NR	М		С	М
Triethanolamin	М	С		NR	NR			NR
Trinatriumphosphat	М	С	С	С	С		М	С
Terpentin	NR	С	NR	С	С	С	М	С
Harnstoff	М	С	С	NR	С	С	С	С
Harnsäure	NR	С	М	NR			С	
Lack	М	C	С	М	С	С	С	С
Pflanzliche Öle	С	С		С	С	С		
Essig	NR	С	С	М	NR	С	С	М
Wasser	С	С	С	С	М	С	С	С
Saures Wasser, Bergbau	NR	С	С	С	С		С	С
Weißlauge	NR	С	С	С	С		С	NR
Xylen	NR	С	М	NR	С	С	С	С
Xylol	NR	С		NR	С			
Zinkchlorid	М	С	С	С	С	С	С	М
Zinksulfat	М	С		С	С	С	С	М

VERTRÄGLICHKEITSEINSTUFUNG: CVerträglich NRNicht empfehlenswert MIm Allgemeinen nicht empfehlenswert PEEK° ist eine Marke von Victrex, plc.

¹ Die Richtlinien für Flüssigkeitsverträglichkeit dienen nur zur Bezugnahme. Es müssen praktische Tests durchgeführt werden, ob der Werkstoff für die Flüssigkeit und Anwendung geeignet ist. Die Ergebnisse können auf Grund unterschiedlicher Bedingungen, einschließlich Temperatur, Konzentration, Mischungen und anderen Faktoren, verschieden sein.

Dieser Abschnitt enthält Fehlersuchkriterien für die Hydraulik- und Pneumatikdichtungen von Chesterton. Er dient nur als allgemeiner Leitfaden, wenn Zylinder oder Pressen neu gepackt, überholt oder neu konstruiert werden. Spezielle Richtlinien können vom Chesterton-Berater eingeholt werden. Durch den Einbau länger haltender Dichtungen und Komponenten in einem korrekt konstruierten Zylinder kann der leckagefreie Betrieb beachtlich verlängert werden.

ZUSTAND DER DICHTUNG	Keine sichtbaren Schäden, aber undicht										
	Wahrscheinliche Ursache	Mögliche Lösung									
	Falsch bemessene Dichtung dichtet weder dynamisch noch statisch.	Dichtungs- und Anlagenabmessungen prüfen. Auf zusätzliche Ursachen des Lecks prüfen, wie undichter statischer O-Ring oder undichte Flanschdichtung.									
	Aquaplaning auf Grund von niedrigem Dichtungsdruck bei hochviskosen Flüssigkeiten und zu glatter Oberflächenbeschaffenheit.	Flüssigkeitsdruck in der Rückleitung zum Tank prüfen. Beschaffenheit der dynamischen Oberfläche prüfen. Zyklusgeschwindigkeit prüfen. Andere Dichtungskonstruktion mit höherer Vorspannung in Betracht ziehen.									
ZUSTAND DER DICHTUNG	Gerollte oder verdrehte Dichtung kann per Dichtungsraum haben und stark gerollt sei										
	Wahrscheinliche Ursache	Mögliche Lösung									
	Verschiedenste Bedingungen können eine Dichtung zum Rollen bringen. Mitschleifen auf Grund falscher Bemessung, Unterdruck- wirkung, Extrusion oder Anschwellen können eine Dichtung zum Rollen bringen. Außerdem können seitliche Belastung und Stoßbelastungen beitragende Faktoren sein.	Dichtungs- und Anlagenabmessungen prüfe Betriebsbedingungen des Systems und der Anwendung prüfen. Nach anderen Arten vo Schäden suchen, um die Ursache für dieses Problem zu ermitteln.									
ZUSTAND DER DICHTUNG	Dichtungslippen komprimiert, gequetscht oder gefaltet										
	Wahrscheinliche Ursache	Mögliche Lösung									
	Dichtung zu hoch für die Nut.	Dichtungsnut neu bearbeiten oder kürzere Dichtung benutzen.									
A A	Lose untere Buchse unter der Dichtung trifft bei Druckbeaufschlagung auf die Dichtung.	Untere Buchse sichern und entlüften.									
	Dichtung wird durch eine metallische oder elastomere Sicherungsvorrichtung mechanisch vorgespannt.	Vorrichtung entfernen, falls diese nicht erforderlich ist, oder Vorrichtung bearbeiten, damit kein Kontakt mit der/den Dichtungslippe(n) auftritt.									
	Dichtung wird durch Unterdruck oder falsch bemessene Dichtungsgröße auf den Nutboden gezogen.	Unterdruckzustand korrigieren oder Dichtung mit einer Sicherungsvorrichtung sichern. Dichtungs- abmessungen und korrekte Anwendung von Kolben- und Stangendichtungen prüfen.									
	Topfmanschettenlippe wird durch Nieder- halteplatte am Kolben gequetscht oder fungiert als Anschlag am Hubende.	Korrekter Innendurchmesser ("d2") der Topfmanschette relativ zum Durchmesser der Niederhalteplatte. Mechanischen Anschlag für Hub vorsehen oder Manschette mit kürzerer Lippe auswählen.									

ZUSTAND DER DICHTUNG	Extrusion am Rücken der Dichtung des Innendurchmessers								
	Wahrscheinliche Ursache	Mögliche Lösung							
	Wenn die Extrusion entlang des gesamten Umfangs des Innendurchmesserrückens auftritt, ist das Spiel zwischen Stange und Deckel oder Buchse für den gegebenen Druck zu groß.	Deckel oder Buchse neu bearbeiten oder austauschen, um das erforderliche Spiel zu erhalten. Einen starren Anti-Extrusionsring benutzen.							
	Falls Extrusion nur am halben Umfang des Innendurchmesserrückens auftritt, ist der Kolben seitlich belastet. Der Deckel ist evtl. nicht zentriert oder der Zylinderkopf ist verkantet.	Deckel oder Buchse neu bearbeiten oder austauschen. Lager austauschen. Anti- Extrusionsring benutzen. Prüfen, ob Deckel zentriert ist.							

ZUSTAND DER DICHTUNG Extrusion am Rücken der Dichtung des Außendurchmessers		Sendurchmessers
	Wahrscheinliche Ursache	Mögliche Lösung
A. Kolbenanwendung	A1: Wenn die Extrusion entlang des gesamten Umfangs am Rücken der Dichtung des Außendurchmessers auftritt, ist das Spiel zwischen Kolben und Bohrung zu groß. Evtl. auf Grund von mangelhafter Konstruktion, Abnutzung oder Druck- anschwellung oder "Aufblasen".	A1: Kolben neu bearbeiten oder austauschen oder neue Hülse einsetzen, um das erforderliche Spiel zu erhalten. Nichtmetallische Führungsbänder benutzen, um Verschleiß zu vermeiden. Integrität des Zylinders relativ zum Maximaldruck prüfen. Bei extremen Stoßbelastungen Anti-Extrusionsringe benutzen.
	A2: Falls Extrusion nur am halben Umfang am Rücken der Dichtung des Außendurch- messer auftritt, ist der Kolben seitlich belastet oder der Zylinder unrund.	A2: Kolben überarbeiten, damit nichtmetal- lische Führungsbänder angebracht werden und diese den Kolben zentrieren können. Die Zylinderbohrung auf mögliche Unrundheit (oval) prüfen.
P. Stangandichtungganvandung	B: Zu großes Spiel zwischen Deckel und Dichtraumbohrung.	B: Deckel neu bearbeiten oder austauschen oder Anti-Extrusionsring benutzen.

B: Stangendichtungsanwendung		
ZUSTAND DER DICHTUNG	Nutring in Querschnittsmitte geteilt	
	Wahrscheinliche Ursache	Mögliche Lösung
	Wenn die Teilung oder Separation entlang des Großteils des Dichtungsumfangs auftritt, ist die Ursache ein zu groß bemessener Einstellring oder eine falsche Dichtungsgröße.	Die Anlagenabmessungen prüfen und mit der Dichtungsabmessung vergleichen.

Wahrscheinliche Ursache Wahrscheinliche Ursache Wenn die Teilung oder Separation entlang eines kleinen Teils des Dichtungsumfangs auftritt, ist die Ursache fehlende Konzentrizität oder Unrundheit der Anlage. Lagerführung bearbeiten oder austauschen, um konzentrische Stange und Kolben zu erhalten. Dichtraum und Zylinderbohrungen auf Rundheit prüfen.

ZUSTAND DER DICHTUNG	Halbmondförmiger Abschnitt fehlt von der dynamischen Dichtungslippe	
	Wahrscheinliche Ursache	Mögliche Lösung
	Kolbendichtungslippe bewegt sich beim Einbau oder Einsatz über dem Anschluss.	Scharfe interne Anschlusskanten abfasen, Hub- oder Kolbenkonstruktion ändern, damit der Anschluss vermieden wird. Wenn dies beim Einbau passierte, Unterlegscheiben einlegen oder die Dichtung auf andere Weise vor scharfen Kanten schützen.
	Dichtungslippe wurde beim Einbau geknickt, gequetscht oder zurückgerollt.	Vorsichtig einbauen. Keine scharfen Werkzeuge benutzen. Die Lippe prüfen, bevor sie in die Bohrung gedrückt wird.

ZUSTAND DER DICHTUNG	Starker Abrieb oder Rillenbildung an der dynamischen Dichtungslippe	
	Wahrscheinliche Ursache	Mögliche Lösung
A. Stangendichtungsanwendung	A1: Übermäßiger Verschleiß am Innendurch- messer zeigt mangelhafte Stangenober- fläche an.	A1: Stange oder Kolben nacharbeiten oder austauschen, um eine Oberflächengüte von 0,2 μm – 0,61 Ra zu erhalten.
	A2: Übermäßiger Verschleiß am Innendurch- messer zeigt schleifend wirkende Teilchen im System an.	A2: Scharfe Lippe, abriebbeständigen Abstreifer einbauen. Einen extern montierten, einfach austauschbaren Abstreifer in Betracht ziehen. In besonders nassen/schmutzigen Umgebungen kann ein kundenspezifischer Abstreifer erforderlich sein
B. Kolbenanwendung	B1: Übermäßiger Verschleiß am Außendurchmesser zeigt mangelhafte Bohrungsoberfläche an.	B1: Zylinderrohr nacharbeiten oder austauschen, um eine Oberflächengüte von 0,2 μm – 0,61 Ra zu erhalten.
	B2: Übermäßiger Verschleiß am Außendurch- messer zeigt schleifend wirkende Teilchen im System an.	B2: Zustand der Flüssigkeit prüfen. System mit tragbarem Filter filtrieren oder System entleeren und spülen.

ZUSTAND DER DICHTUNG

Starke Abnutzung, Verformung, Eintrübung der Dichtungsringe der Topfmanschetten

Wahrscheinliche Ursache

Mögliche Lösung

Zu wenig stark komprimierte Dichtungsringe können zum Rollen und Verdrehen und Klemmen der Ringe und damit zu Leckage und hoher Reibung führen. Trennfuge prüfen, sofern zutreffend; Ausrichtung aller Ringe prüfen, bevor der nächste Ring eingebaut wird.

Zu starkes Komprimieren der Dachmanschette kann zum Klemmen und übermäßiger Reibung auf Grund der fehlenden Schmierschicht und höheren Zugkräften führen. Anlage und Topfmanschette behutsam messen; Unterlegscheiben einlegen und korrekt justieren. Wenn Stange oder Kolben klemmt, die Vorspannung lockern, um Klemmen zu beheben. Die Ringe müssen evtl. ausgebaut und wieder korrekt eingebaut werden.

ZUSTAND DER DICHTUNG

Verschleiß am dynamischen Rücken 360° entlang des Dichtungsumfangs

Wahrscheinliche Ursache

Mögliche Lösung

Falsche Anwendung von Stangen- oder Kolbendichtung oder falsche Dichtungsgröße. Stangendichtungen für Stangenanwendungen und kolbenmontierte Dichtungen an Kolben einsetzen. Anlagen- und Dichtungsabmessungen prüfen.

ZUSTAND DER DICHTUNG

Übermäßiger Verschleiß am dynamischen Rücken 180° entlang des Dichtungsumfangs. Kann auch Extrusion am dynamischen Rücken 180° gegenüber der abgenutzten Seite der Dichtung zeigen

Wahrscheinliche Ursache

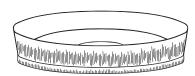
Mögliche Lösung

A. Stangendichtungsanwendung

Seitenbelastung auf Grund von Fehlausrichtung, Montage und Bügelkonstruktion oder Anwendung und Konstruktion, führt zu Buchsen- und Lagerverschleiß und übermäßigen Dichtungsverschleiß. Vergrößert das Spiel und führt möglicherweise zu Extrusion.

Lager oder Buchse neu bearbeiten oder austauschen, um konzentrischen Lauf zu erhalten. Auf Fehlausrichtung oder Ursache der seitlichen Belastung prüfen. Lagerbereich durch starke, nichtmetallische Lager vergrößern. Durchmesserspiel auf ausreichende Dichtungsführung prüfen.

B. Kolbenanwendung


ZUSTAND DER DICHTUNG

Übermäßiger Verschleiß am Rücken 360° entlang des Umfangs der Topfmanschette, häufig hat die Dichtungslippe keinen Verschleiß

Wahrscheinliche Ursache

Wahrscheinliche Ursache

Mögliche Lösung

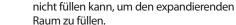
Zu starkes Komprimieren der Topfmanschette auf Grund zu festen Anziehens der Niederhalteplatte oder zu dickem Sockel für den vorhandenen Platz, sodass der Rücken herausgedrückt wird.

Die Flanschdicke (H2) um 10 % komprimieren. Die Dicke des Sockels relativ zum verfügbaren Platz prüfen. Nicht zu fest anziehen. Manschette nach dem Festziehen einer Sichtprüfung auf Extrusion unterziehen.

ZUSTAND DER DICHTUNG

Vertikale/axiale Kratzer an statischer Lippe können mit anderen Schäden verbunden sein

Mögliche Lösung



Falsch bemessene Stangen- oder Kolbendichtung führt zum axialen Verschieben der Dichtung in der Dichtungsnut bzw. im Dichtraum. Axiale Bewegung wird durch Kratzer auf der statischen Lippe ausgewiesen.

Unterdruck, weil die Flüssigkeit den Zylinder

Die Abmessungen der Dichtungsnut bzw. des Dichtraums und den Stangen- oder Bohrungsdurchmesser prüfen. Auf korrekte Passung der Dichtung und Anwendung der Stangendichtung oder kolbenmontierten Dichtung prüfen.

A: Kolbenanwendung

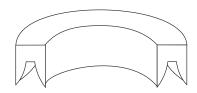
Wenn möglich die Stoßbelastung korrigieren. Rohrdurchflussvolumen des Systems prüfen. Alternative Dichtungskonstruktion in Betracht

A: Übermäßiger Verschleiß oder "pockenförmiges" Aussehen des Außendurchmessers ist ein Anzeichen für mangelhafte Oberflächengüte der statischen Dichtraumborhung oder Dichtungsnut.

A: Nacharbeiten, um eine Güte der statischen Oberfläche von 0,8 µm – 1,15 µm Ra zu erzielen.

B: Stangendichtungsanwendung

B: Übermäßiger Verschleiß oder "pockenförmiges" Aussehen des Innendurchmessers ist ein Anzeichen für mangelhafte Oberflächengüte der Kolbendichtungsnut.


B: Nacharbeiten, um eine Güte der statischen Oberfläche von 0,8 µm – 1,15 Ra zu erzielen.

ZUSTAND DER DICHTUNG

Entfärbung, Schwellung, Erweichung oder Aushärtung des Dichtungswerkstoffs

Wahrscheinliche Ursache

Mögliche Lösung

Verträglichkeit mit Hydraulikflüssigkeit, Schmieröl, Einbaufett oder Lösungsmittel nicht gegeben.

Verträglichkeit des Dichtungswerkstoffs prüfen. Flüssigkeitssorte wechseln oder Dichtung aus anderem Werkstoff benutzen.

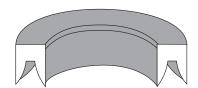
ZUSTAND DER DICHTUNG

Schwarze, teerartige Ablagerungen und verrußte Stellen, möglicherweise komplett durch den Dichtungsrücken durchgebrannt. Diese Schäden treten im Tal zwischen den Dichtungslippen auf.

Wahrscheinliche Ursache

Mögliche Lösung

Dieseling. Auf Grund von Selbstentzündung der Hydraulikflüssigkeit wird starke Hitze im beschädigten Bereich erzeugt. Dieseling resultiert aus Luftbläschen, die in der Flüssigkeit aufsteigen und zwischen den Dichtungslippen eingefangen werden; unter Druck werden die Bläschen komprimiert. Schnelle Druckentlastung der komprimierten Luftbläschen führt zu Energiefreisetzung als Wärme.


Die gesamte Luft aus dem Hydrauliksystem entfernen. Beim Entlüften des Systems nach Arbeiten an Pumpe, Ventilen, Leitungen oder Betätigungselementen vorsichtig arbeiten.

ZUSTAND DER DICHTUNG

Dichtung ist dunkel oder schwarz, trocknet aus oder ist stark verformt

Wahrscheinliche Ursache

Mögliche Lösung

Eintrübung der gesamten Dichtung ist ein Anzeichen für zu hohe Flüssigkeitstemperaturen oder Aussetzung an Hitze aus der Umgebung.

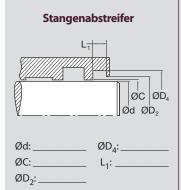
schützen. Kühlsystem warten oder einsetzen. Dichtung aus Hochtemperaturwerkstoff benutzen.

Gegen Hitzequellen in der Umgebung

Eine dunkle dynamische Lippe weist nur auf übermäßige Reibung auf Grund von Geschwindigkeit, mangelnde Schmierung oder Verklemmen von Lippe oder Rücken hin.

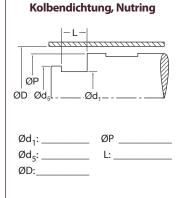
Hub- oder Drehgeschwindigkeit prüfen. Schmierung des Pneumatiksystems oder Schmierwirkung der Hydraulikflüssigkeit prüfen. Auf Anzeichen von Verklemmen der Lippe und Extrusion des Rückens prüfen.

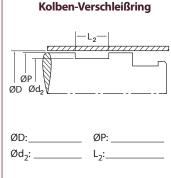
Eine stark verformte Dichtung weist auf langfristige Aussetzung an Hitze oder extrem hohe Hitze hin. Kann durch laufendes Rollen der Dichtung in der Nut verursacht werden.

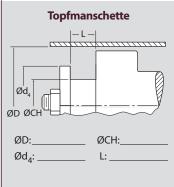

Dichtung aus Hochtemperaturwerkstoff benutzen. Abmessungen der Dichtungsnut prüfen.

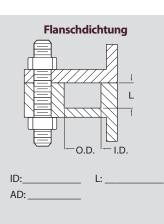
Formular zur Anforderung technischer Maßnahmen

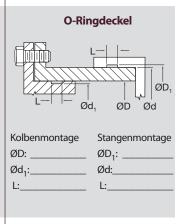

	KONTAKTINE	ORMATIONEN		
Name		Datum		
Unternehmen		Adresse		
Telefon		E-Mail		
Kunde				
Nur neue Werkzeuge (Profil un	nd Werkstoff unten ausfüllen)			
Dichtungsprofil oder Beschre	ibung	Werkstoff		
	BETRIEBSBI	DINGUNGEN		
☐ Statis	sch 🗆 Längsbewegung	Rotierend	Oszillierend	
	Geschwindigkeit: ft/min		Gas Fl	
Anwendung Hersteller Modell Fehlausrichtung (Welle zu Bohrung)		LAGE Oberflächengüte Härte Galvanisierung/Beschio Exzentrizität (T.I.R.) oder Schlag	chtung	
Siehe Rückseite für Anlagenabmessu	<i>ungen.</i> edingungen beschreiben:	J		

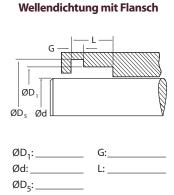


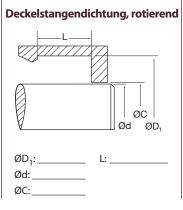


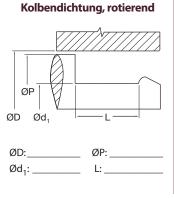


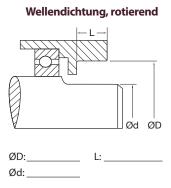












PRODUKT INDEX

PRODUKT	ТҮР	SEITE
5K	Abstreifer	8, 14 , 52
6K	Stangendichtungen	8, 20, 53
7K	Stangen- und Kolbendichtungen	8, 26 , 58
8K	Stangen- und Kolbendichtungen	8, 22 , 54, 57
9K	Anti-Extrusionsringe	8, 28 , 59
10K	Stangen- und Kolbendichtungen	8, 16 , 53, 56
11K	Stangendichtungen	8, 21 , 54
14K	Drosselbuchsen	39, 60
16K	Führungsbänder	8, 29, 59
17K	Führungsbänder	8, 29 , 59
18K	Führungsringe	8, 30 , 59
19K	Führungsringe	8, 30 , 59
20K	Stangen- und Kolbendichtungen	8, 24 , 55, 58
20KD	Flansch- und statische Dichtungen	8, 27 , 55, 58
21K	Abstreifer	8, 14 , 52
21K	Eingepresste Abstreifer	8, 15 , 52
22K	Stangen- und Kolbendichtungen	8, 17 , 53, 56
22KE	Stangen- und Kolbendichtungen	8, 18 , 53, 56
22KN	Stangen- und Kolbendichtungen	8, 16 , 53, 56
23K	Stangen- und Kolbendichtungen	8, 19 . 53, 56
27K	Stangen- und Kolbendichtungen	8, 22 , 54, 57
30K	Lager- und Getriebeschutz	8, 36 , 60
30KC	Viskose Flüssigkeiten und Pulver	38 , 60
33K	Lager- und Getriebeschutz	8, 37 , 60
600	Stangendichtungen	8, 23 , 54
100 Serie	Mit Mäanderfedern	8, 40 , 61
200 Serie	Design mit elliptische Schraubenfedern	8, 41 , 61
300 Serie	Design mit Stützwendelfedern	8, 42 , 62
400 Serie	Rotierende Dichtungen	8, 43 , 62
500 Serie	V-Profil-Dachmanschetten	8, 44 , 62
CCS	Stangen- und Kolbendichtungen	8, 25 , 55, 58
WR	Kundenspezifische Führungsringe	8, 31 , 59

ANMERKUNGEN	Engineered Polymer Solution

Alle Angaben hinsichtlich chemischer Verträglichkeit, Druck und Temperatur sowie der Anwendungsbereiche in diesem Katalog stützen sich auf allgemeine Einsatzerfahrungen. Auf Grund der verschiedenartigen Anwendungen unserer Produkte, der umfangreichen Produktpalette und der stark unterschiedlichen Anlagebedingungen sowie der nicht vorauszusehenden menschlichen Faktoren, die bei dem Einsatz dieser Produkte durch den Endbenutzer auftreten können, sollten Sie sich nicht auf die angegebenen Empfehlungen verlassen, sofern keine spezifischen früheren Einsatzerfahrungen vorhanden sind.

Spezifische Daten über Materialien, Bauweisen, Montage- und Störungsbehebungsverfahren können ohne vorherige Bekanntmachung geändert werden.

Die Leistung hängt direkt von den Prozessbetriebsbedingungen und dem Zustand der Anlage ab. Die technischen Daten wurden in Laborversuchen ermittelt und dienen lediglich als allgemeine Richtlinien. A.W. CHESTERTON COMPANY GIBT KEINERLEI AUSDRÜCKLICHE ODER MITTELBARE GARANTIEN, EINSCHLIESSLICH VERKÄUFLICHKEIT UND EIGNUNG FÜR EINE BESTIMMTE ANWENDUNG ODER BENUTZUNG. IRGENDWELCHE GARANTIEN SIND AUF DAS ERSETZEN DES PRODUKTES BESCHRÄNKT.

GLOBALE LÖSUNGEN UND LOKALER SERVICE

Seit 1884 hat sich die A.W. Chesterton Company weltweit einen Namen als Lieferant von qualitativ hochwertigen Lösungen für den Industriebedarf gemacht. Der Erfolg von Chesterton steht weltweit für erhöhte Anlagenzuverlässigkeit, optimierten Energieverbrauch und zuverlässigen technischen Kundendienst vor Ort.

Weltweit stellt Chesterton zur Verfügung:

- Betreuung von Anlagen in über 100 Ländern
- Fertigungs- und Service-Zentren auf der ganzen Welt
- Mehr als 500 Verkaufs- und Vertriebsstandorte weltweit
- Über 1200 top-ausgebildete Spezialisten und Service-Techniker für Sie vor Ort im Einsatz

Besuchen Sie unsere Website unter www.chesterton.com

ISO-Zertifikate sind erhältlich unter www.chesterton.com/corporate/iso

Die technischen Daten wurden in Laborversuchen ermittelt und dienen lediglich als allgemeine Richtlinien.

A.W. CHESTERTON COMPANY GIBT KEINERLEI AUSDRÜCKLICHE ODER MITTELRARE GARANTIEN, EINSCHLIESSLICH VERKÄUFLICH KEIT UND EIGNUNG FÜR EINE BESTIMMTE ANWENDUNG ODER BENUTZUNG. IRGENDWELCHE GARANTIEN SIND AUF ERSETZEN DES
PRODUKTES BESCHRÄNKT. ALLE HIER GEZEIGTEN ABBILDUNGEN DIENEN LEDIGLICH ZUR VERANSCHAULCHUNG, SIE SIND NICHT DAZU GEEIGNET, INFORMATIONEN ÜBER GEBRAUCHSANLEITUNGEN, SICHERHEIT, HANDHABUNG ODER EINSATZ BZW. BERATUNG BZGL.
PRODUKTEN ODER ANLAGEN ZU ÜBERMITTELN. INFORMATIONEN ÜBER DEN SICHEREN EINSATZ, DIE LAGERUNG, HANDHABUNG UND ENTSORGUNG VON PRODUKTEN SIND DEM RELEVANTEN MATERIALSICHERHEIT-DATENBLATT, DEN PRODUKTAUREN EINSATZ, DIE VERFRAGEN.
UND/ODER DEN PRODUKTAURFLEBERN ZU ENTWEIMEN BZW. BEI IHREM ÖRTLICHEN CHETERTOR-EIPPRÄSENTANTEN ZU ERFRAGEN.

ZU BEZIEHEN DURCH:

860 Salem Street Groveland, MA 01834 USA Telefon: 781-438-7000 Fax: 978-469-6528 www.chesterton.com